
Priority R&D topics for high assurance

• Develop more cost-effective methods for high assurance software
development. This includes by reference, at the least, “improved source

scanning” and “correct by construction” methods.

• Compose secure systems from independent secure components.

• Improve binary scanning tools.
– This is a subset of the points below involving scanning tools (improve source & object code

scanners and automated security testing tools for non-malicious code; develop detectors of
malicious code by simulation; and improve source & object code scanners for malicious code).

– This is included in high assurance for several reasons, including for checking if malicious code
has been introduced into the binary (when the source is available) as well as for handling
COTS binary-only releases.

• Truly trustworthy computing base.

• Develop methods to minimize/control the functionality of product.

For medium and low assurance, the following
were identified as the highest priorities:

• Develop cost effective methods for improving software
development

• Compose secure systems from independent secure
components.

• Metrics and practical processes to measure them for
software dependability and defensibility (safety, security,
and survivability). In particular, an improved metric of
exploitability, to answer questions such as “has assurance
improved? which approach is better and by how much?
How assured am I?” A plausible final answer would be
“time to exploit.”

• Devise mechanisms to detect/counter run-time vulnerability
exploits.

Development Processes

• Identify and validate minimum subsets of
organizational practices & process
requirements for secure software
development.

• Provide incentives for COTS vendors to
seriously incorporate security concerns during
development & sustainment.

Scanning/ detection of security
vulnerabilities

• Improve source & object code scanners and
automated security testing tools for non-
malicious code.

• Develop detectors of malicious code by
simulation.

• Improve source & object code scanners for
malicious code.

• Improve binary code coverage tools.

• Automated pedigree analysis of a program.

Scanning/ detection of security
vulnerabilities

• Improved detection of similarities between
portions of a program.

• Improved detection of differences between
portions of a program.

• Tools to identify susceptibility to denial-of-
service attacks.

• Automated covert channel detection.

• Improve analysis tool interoperability.

Countermeasures

• Improve patch management.
• Improved mechanisms to simplify upgrading

programs without restarting them, using special
hardware, or complex software development.

• Devise mechanisms to detect/counter run-time
vulnerability exploits. Improved self-detection or
protection from vulnerabilities.

• Improve privilege & damage minimization.
• Develop methods to minimize/control the

functionality of products.
• Develop methods to identify “code that does

things not specified.

Countermeasures

• Developing a truly trustworthy computer base.

• Improved visualization techniques of security
properties in existing systems.

• Develop security escorts.

• Develop “plug-in” approaches to control
sharing of sensitive information in networked
environments.

• Develop Denial of Service (DoS)
countermeasures.

Development Tools

• Devise mechanisms for non-repudiable SCM.

• Devise safe & secure language subsets/extensions
with automated checking.

• Devise new secure high-level languages and code
generators.

• Automatic generation of artifacts by development
tools that can be provided to end-users or
evaluators to support assurance.

• Assurance of development tools.

Application Environment

• Improve GUI security.

• Improved methods of developing secure GUI
programs so they can be effectively analyzed.

• Devise improved infrastructure mechanisms
for application security.

Requirement/Design/Validation

• Improved mechanisms for specifying security
properties.

• Improved modeling.
• Improved approaches/patterns for secure

architecture/design.
• Improve anti-reverse engineering mechanisms.
• Security with Privacy.
• Effective methods of tagging data in a distributed,

heterogenous, cross-domain environment with high
granularity.

• Software self-attribution.

Education

• Identify and validate individual knowledge
requirements to develop secure software.

• Promulgate existing knowledge in how to
develop secure software, including high
assurance software.

• Develop, validate, and provide incentives for
secure software development curricula in
CS/SE programs.

Secure Kernels

