') coverity

Static Analysis Use Case

Samba and Coverity

Copyright © Coverity, Inc. 2010. All Rights Reserved. This publication, in whole or in part, may not be reproduced, stored in a computerized, or other retrieval system or
transmitted in any form, or by any means whatsoever without the prior written permission of Coverity, Inc.



e Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
e Since grown to 300+ projects

e Over 15,000 bugs fixed



Evaluating Effectiveness

There Is no single measure of the
effectiveness of a tool on the software
development process.



Evaluating Effectiveness

Since we can never run the same
development effort twice, with identical
teams, portions of this evaluation are
highly subjective.



Evaluating Effectiveness

 Objective measures
— Static Analysis produced defect counts
— Numbers of Bug Reports
— Defects confirmed as ‘real’ by the developers

e Subjective measures
— Anecdotal comments by developers
— Community feedback
— ‘Support Load’ reduction



Objective measures

o Static Analysis produced defect counts

— (Good objective measure
 Reproducible
 Consistent
 Low effort to collect
 Automatable

o “Static Analysis Tools as Early Indicators of Pre-
Release Defect Density” - Microsoft Research
Paper



Objective measures

 Numbers of Bug Reports

— Potentially useful if all other factors are
controlled

— Not the case in our example

Multiple development branches

Concurrent new development during defect
resolution

Userbase changes over time
Platform support changes over time



Objective measures

o Defects confirmed as ‘real’ by the
developers

— A high False Positive rate would bring the
defect count metric into gquestion

— Would also affect future developer trust in the
analysis tool



Subjective measures

 Anecdotal comments by developers

— Informative, but not comparable between
projects

« Community feedback

— Dependent on the nature of each project’s
community



Subjective measures

e ‘Support Load’ reduction

— Difficult to quantify in an open source
environment, due to the variety of support
channels



Your Measures?

As In most engineering problems...

What do you want to minimize?
— Immediate Cost
— Long Term Cost
— Time

\\\‘\\\v
— Manpower W\ @,

— Ongoing Support |
going supp LQ'Q\

N

O



Use Case — Samba & Coverity

e Samba
— Open source networking suite
— Provides Microsoft protocol compatibility
— International team, started in Australia
— Project founded in 1992
~300KLOC -> 850KLOC 2006 -NOW




Use Case — Samba & Coverity

o Started regular scanning March 2006
14 Developers accessing the results
 Database available 24/7, SAAS

 New analysis every 2 days on average
— (797 builds in database)



Use Case — Samba & Coverity

o Static Analysis defect counts, 310KLOC

Defect Count

250
203
197
200 -
150 -
135
113
99
100 - B Defect Count
75
62
50 -
29
14
O | T T T T T T T - T O 1

© © © © © © © © ®
N P S S o SN $ P o

U U N S U U S M
'b\b "{3\/\ rb\cb rb\cb 0_)\\ (b\.\ Q,\\q, rb\.\"f} r'b\\



Use Case — Samba & Coverity

Defect Count
250

Day 1: Fixed

4 NULL Pointer derefs 200 -

10 Resource leaks
1 Uninitialized data 150 -
31 Use after free
100 -

But — other changes m Defect Count

that day introduced

new defects 50

29
0

O i 1

© © © © © © ® ©
S S P X $ NN $ NN
& <:>\"’ LS CHR N
) B ) B o o o3 o3 o\




Use Case — Samba & Coverity

Defect Count

) 250
Day 2: Fixed
203 197
15 NULL Pointer derefs 200 -
4 Resource leaks
1 static buffer overrun 5, |
53 Use after free 135 113
3 returned NULL 99
. 100 - H Defect Count
2 bad comparison 25
1 Dead code 62
50 -
29
14
O - T T T T T T T - T O 1
o] (o) o] O o o) o e) o
SN O N P P N P O P



Use Case — Samba & Coverity

118 if (Ibrl lock) {
119 return False:
120 }




Use Case — Samba & Coverity

Event func_conv: Suspicious implicit
conversion to function pointer:

"&brl lock == 0",

did you intend to call the function?
118 if (Ibrl lock) {

119 return False;

120 }




Use Case — Samba & Coverity

6 8 8 /****************************************************************************

689 Lock a range of bytes.

690 ****************************************************************************/
691

692 NTSTATUS brl_lock(struct byte range_lock *br_Ick,

693 uintl6 smbpid,

694 struct process id pid,
695 br_off start,

696 br_off size,

697 enum brl type lock type,
698 enum brl flavour lock flav,
699 BOOL *my lock ctx)
700 {

701 NTSTATUS ret;

702 struct lock struct lock;

703

704 *my lock ctx = False:




Use Case — Samba & Coverity

Defect Count

250

200

150

100 B Defect Count

50

N I T




Use Case — Samba & Coverity

Defect Count

250

200

150 -

100 - m Defect Count

50 -

T I i,

A& A A A
S PSSP
AU VAU A
P° N

o o o o s} o o e} 8] o A
S T PP ST T ST P FSHSFS
I L U L L U L i L L\
SN S S RN = SRS SN SN

A
S &
Qv v
AV o



Use Case — Samba & Coverity

Defect Count
250

200

150 -

100 Would this graph be solid blue?

50 |

o 9 P
A0 P

30 N O O O O O O Wb
3 S R S RN R R QRS

N
A @0 9 P D ©©

N
3 o e

A

A

6 L L H H B H L L b A A A A A A A A
S F ST ST ST ST IFT ST IFT IS TSP S SO

B Defect Count



Use Case — Samba & Coverity

o Defects confirmed as ‘real’ by the
developers

13 defects marked False Positive
216 total defects

13/216 =6%



Use Case — Samba & Coverity

e Subjective measures
— Anecdotal comments by developers

“This tool has become part of our process”



Use Case — Samba & Coverity

“Using [...] source code analysis technology
IS like having a developer on the team with
an inhuman attention to detail, who points
out all the corner cases and boundary
conditions developers didn’t consider
when they first wrote the code.”



Use Case — Samba & Coverity

“I| code more carefully, because | know my
laziness will be caught and embarrass
me.”



Use Case — Samba & Coverity

« Community feedback



Use Case — Samba & Coverity

« Community feedback

— Invited to give opening keynote at annual
Samba conference in 2009



Open Source Reports

 Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009

—
{feancovtairrzon
Most Commonly Found v
Defects
Frequency of Functions by Length
Loaking at the mast commanly found defects in code can help formuate idzas about what Kind of code contructs 1z %
may cause developers to make mare ercors A type of defect might be more Bequenty found because it mvolves code i !
canstrazts that are harder to understand, more freq , o imchve 2 hard. P iing interface. L G
Frogramming defects at this level are often the rot cause of crashes, security walnerabilities, and other progeam . &
mishehavior. 53
e 2
Ranking Defect Types 23
From the inceptinn of the Scan site in 2006 until May 2008_ Scan discovered an aggregate of 27,752 defects among, 5 £
all the apen seusee projects participaring in Scan, That aumber incmised 102 wial of 38,453 defeces found by mt .
Auguse 2009, In this section, we consclidared all defect: acrozs all participating open tource projects and categorized 3 3
theem by defect types. The results ace shown in the following table. - i kil e i R
o I .
Defect Type 2008 2009 % Difference  Ranking 010 BD BT @ 4 111 540 A w134 g o hs i N =
Froquency  Frequescy Change
NULL Pointer Deference 27,050 2731% 14w | [ R TH MR, BORIN FIHnTIOM
Hesource Leak 25.73% 2334% 239% | [
Unintentional Ignered Expresions .76 9.71% a0Ew | o
Use Before Test (NULL) 9.09% 835 025% 1 1
Use After Free 6460 591% 034 | -1
Bofer Ovefiom (etatocally allocated) 614 57 s | EY The graph is quite smooth ntl roughly the 200 LOC madk. Atthat poin, it becomes rougher, and the duta points
Deaak Uoe of Retmrraed NULL 85K T304 Eew | 5 become more sparse, This is an indication of where our soure code dara sec begins 1o become moresparee. As the Sean
Rl oy . AR YR, 5 dats set continues o grow, we would expect to see 3 very gradusl ext=nsion of the smooth area.
Hoaty gt Ketx ool Mgty ! 3 o t 2 While the 2008 repart shoired cumbers that were aggregated oa 2 per-project basis, and happeed 1o find cha avernges
Type and Allocation Size Mismatch Q62% 110% 08k | e acroas all projects were in the nejghbarhood of a modern programmeds sereen size, 2 close-up lok at the funcon
Buffer Overflow (dymamically allocated) 0318 0.21% a0 | [ listribution shows no d ¥ near the Jength Ranctions, If Gid have any significant tendency
Tlee Befure Teot (negative) 021% 0.16% a0 | [ to break functions up, by refuctoring; when the seren-length bonndary is passed, then the graph should show oneer
moce sudden deops at the comemon s:omen lengths as the functions over that size are broken up, and contzibute to the
Feotnote: For more descriptive information on these defect types, see Appendes I distribution of shocter finctions to the Left of the limit,
The 2008 Scan results in the above table are genecared wsing the 2006 version of Coverity Sratic Analysic. This Since the graph s clearly smcoth, with na such drops, programmers sither have oo such tendency to break functions
2006 vemion was alie wsed For the 2007 analysis of open source prjects on Rung 1. Homeve, for projeces an at sereen length, o1 do sa acely enough for it to have oo visible impact,
Rung 2, 1 newer version of Caverity Static Analysis was used to generate the 2007 results, This accounts for the
vea lacgest changes in the dirtribution of results from 2008 to 2009, Projects on Rung 2 had resclved all of theic
earlier idenfified resource leaks, so the latest runs have a smaller percentage of that fype of defect. Improvernents to
the newer version of Coverity Static Analysis used for Rung 2 projects identify a large number of additional cases
af uninitialized values, leading te the increaze in that<ategocy beoween 2008 and 200, Viewed alone, thatone
capabillity change ised uninitislwed value e o over 21% of the defect distribution for projects pow oa Rung 2.




Q&A

e Questions?



