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e Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
e Since grown to 300+ projects

e Over 15,000 bugs fixed



Evaluating Effectiveness

There Is no single measure of the
effectiveness of a tool on the software
development process.



Evaluating Effectiveness

Since we can never run the same
development effort twice, with identical
teams, portions of this evaluation are
highly subjective.



Evaluating Effectiveness

 Objective measures
— Static Analysis produced defect counts
— Numbers of Bug Reports
— Defects confirmed as ‘real’ by the developers

e Subjective measures
— Anecdotal comments by developers
— Community feedback
— ‘Support Load’ reduction



Objective measures

o Static Analysis produced defect counts

— (Good objective measure
 Reproducible
 Consistent
 Low effort to collect
 Automatable

o “Static Analysis Tools as Early Indicators of Pre-
Release Defect Density” - Microsoft Research
Paper



Objective measures

 Numbers of Bug Reports

— Potentially useful if all other factors are
controlled

— Not the case in our example

Multiple development branches

Concurrent new development during defect
resolution

Userbase changes over time
Platform support changes over time



Objective measures

o Defects confirmed as ‘real’ by the
developers

— A high False Positive rate would bring the
defect count metric into gquestion

— Would also affect future developer trust in the
analysis tool



Subjective measures

 Anecdotal comments by developers

— Informative, but not comparable between
projects

« Community feedback

— Dependent on the nature of each project’s
community



Subjective measures

e ‘Support Load’ reduction

— Difficult to quantify in an open source
environment, due to the variety of support
channels



Your Measures?

As In most engineering problems...

What do you want to minimize?
— Immediate Cost
— Long Term Cost
— Time
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Use Case — Samba & Coverity

e Samba
— Open source networking suite
— Provides Microsoft protocol compatibility
— International team, started in Australia
— Project founded in 1992
~300KLOC -> 850KLOC 2006 -NOW




Use Case — Samba & Coverity

o Started regular scanning March 2006
14 Developers accessing the results
 Database available 24/7, SAAS

 New analysis every 2 days on average
— (797 builds in database)



Use Case — Samba & Coverity

o Static Analysis defect counts, 310KLOC
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Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

118 if (Ibrl lock) {
119 return False:
120 }




Use Case — Samba & Coverity

Event func_conv: Suspicious implicit
conversion to function pointer:

"&brl lock == 0",

did you intend to call the function?
118 if (Ibrl lock) {

119 return False;

120 }




Use Case — Samba & Coverity

6 8 8 /****************************************************************************

689 Lock a range of bytes.

690 ****************************************************************************/
691

692 NTSTATUS brl_lock(struct byte range_lock *br_Ick,

693 uintl6 smbpid,

694 struct process id pid,
695 br_off start,

696 br_off size,

697 enum brl type lock type,
698 enum brl flavour lock flav,
699 BOOL *my lock ctx)
700 {

701 NTSTATUS ret;

702 struct lock struct lock;

703

704 *my lock ctx = False:




Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

o Defects confirmed as ‘real’ by the
developers

13 defects marked False Positive
216 total defects

13/216 =6%



Use Case — Samba & Coverity

e Subjective measures
— Anecdotal comments by developers

“This tool has become part of our process”



Use Case — Samba & Coverity

“Using [...] source code analysis technology
IS like having a developer on the team with
an inhuman attention to detail, who points
out all the corner cases and boundary
conditions developers didn’t consider
when they first wrote the code.”



Use Case — Samba & Coverity

“I| code more carefully, because | know my
laziness will be caught and embarrass
me.”



Use Case — Samba & Coverity

« Community feedback



Use Case — Samba & Coverity

« Community feedback

— Invited to give opening keynote at annual
Samba conference in 2009



Open Source Reports

 Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009

—
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Q&A

e Questions?



