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e Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
e Since grown to 250+ projects

e Over 11,000 bugs fixed



Scan over time

|dentifying Bugs

€h scan.coverity.com

“Coverity's static source code analysis has proven
to be an effective step towards furthering the
quality and security of Linux.”

- Andrew Morton, lead kemel maintainer
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Next Up: Automating and Accelerating Open Source Quality

+ Open Source Automated
Quality Symposium:
Particpate in the evolution
of scan.coverity.com and
st uith pass in the cpan
saurce cormmunity uho a2
Iaveraging aur new
technology. Dates and "Couerity has found bugs in parts of Samba that ve had previously considered robust
detalls to come.., and tested, 1¢' like having a developer on the team yith an ihuman attention to

detail.ult's making a majar cantribution to the cods quality of the Samba project”

- Jeremy Allison, Samba Team

In collsboration with Stanford University, Coverity is establishing 5 new baseline for
software qualty and security in apen source based an the analysis of over 0 of the
st aitical and widely used apan source projects in the warld, Under  cantract with the
Dipartmiant of Homeland Sacunty, e Spply the |atast innzyation n sutomated defact
detaction to uncavar some of the most citical types of bugs faund in software.

+ We will also be putting up
an anline forum, FAQ, and
additional resources so stay
tuned We are making the results of our autormated analysis ausilable to the maintainers within

the open source comrmunity, Additional projects will ba added over time, Flesse dick on

the registration link to gain access, W havs been raceiving 2 high number of raquests

50 ve'll do our best to respond within 24 hours.
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ACCELERATING OPEN SOURCE QUALITY

In collaboration with Stanford University, Coverity s establishing a new baseline
for software quality and securiy in open source. Under a contract with the
Department of Homeland Security, we apply the latest innovations in automated
defect datection to uncover some of the most critcal types of bugs found in
software.
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“COVERITY'S STATIC SOURCE CODE
ANALYSIS HAS PROVEN TO BE AN
EFFECTIVE STEP TOWARDS.
FURTHERING THE QUALITY AND
‘SECURITY OF LINUX."
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Lessons Learned from Evaluating Software
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"acquired locks must be released,” a checker would look for relevant operations (such as basics of DTD

lock() and unlock()) and inspect the code path after flagzing rule disobedience (such fusitispality, Tncluitog

bug finders, leveraged the fact that programming rules often map clearly to source code;

as lock () withnounlock() and double locking). developing valid XML.
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INCiuding open source
A glance through the literature reveals many ways to go about static bug parametriclty fin

references and recursive
finding. For us, the central religion was results: If it worked, it was good, and types o

if not, not. The ideal: check millions of lines of code with little manual setup and find the
maximum number of serious true errors with the minimum number of false revorts. As




Open Source Reports

 Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009

—
{feancovtairrzon
Most Commonly Found v
Defects
Frequency of Functions by Length
Loaking at the mast commanly found defects in code can help formuate idzas about what Kind of code contructs 1z %
may cause developers to make mare ercors A type of defect might be more Bequenty found because it mvolves code i !
canstrazts that are harder to understand, more freq , o imchve 2 hard. P iing interface. L G
Frogramming defects at this level are often the rot cause of crashes, security walnerabilities, and other progeam . &
mishehavior. 53
e 2
Ranking Defect Types 23
From the inceptinn of the Scan site in 2006 until May 2008_ Scan discovered an aggregate of 27,752 defects among, 5 £
all the apen seusee projects participaring in Scan, That aumber incmised 102 wial of 38,453 defeces found by mt .
Auguse 2009, In this section, we consclidared all defect: acrozs all participating open tource projects and categorized 3 3
theem by defect types. The results ace shown in the following table. - i kil e i R
o I .
Defect Type 2008 2009 % Difference  Ranking 010 BD BT @ 4 111 540 A w134 g o hs i N =
Froquency  Frequescy Change
NULL Pointer Deference 27,050 2731% 14w | [ R TH MR, BORIN FIHnTIOM
Hesource Leak 25.73% 2334% 239% | [
Unintentional Ignered Expresions .76 9.71% a0Ew | o
Use Before Test (NULL) 9.09% 835 025% 1 1
Use After Free 6460 591% 034 | -1
Bofer Ovefiom (etatocally allocated) 614 57 s | EY The graph is quite smooth ntl roughly the 200 LOC madk. Atthat poin, it becomes rougher, and the duta points
Deaak Uoe of Retmrraed NULL 85K T304 Eew | 5 become more sparse, This is an indication of where our soure code dara sec begins 1o become moresparee. As the Sean
Rl oy . AR YR, 5 dats set continues o grow, we would expect to see 3 very gradusl ext=nsion of the smooth area.
Hoaty gt Ketx ool Mgty ! 3 o t 2 While the 2008 repart shoired cumbers that were aggregated oa 2 per-project basis, and happeed 1o find cha avernges
Type and Allocation Size Mismatch Q62% 110% 08k | e acroas all projects were in the nejghbarhood of a modern programmeds sereen size, 2 close-up lok at the funcon
Buffer Overflow (dymamically allocated) 0318 0.21% a0 | [ listribution shows no d ¥ near the Jength Ranctions, If Gid have any significant tendency
Tlee Befure Teot (negative) 021% 0.16% a0 | [ to break functions up, by refuctoring; when the seren-length bonndary is passed, then the graph should show oneer
moce sudden deops at the comemon s:omen lengths as the functions over that size are broken up, and contzibute to the
Feotnote: For more descriptive information on these defect types, see Appendes I distribution of shocter finctions to the Left of the limit,
The 2008 Scan results in the above table are genecared wsing the 2006 version of Coverity Sratic Analysic. This Since the graph s clearly smcoth, with na such drops, programmers sither have oo such tendency to break functions
2006 vemion was alie wsed For the 2007 analysis of open source prjects on Rung 1. Homeve, for projeces an at sereen length, o1 do sa acely enough for it to have oo visible impact,
Rung 2, 1 newer version of Caverity Static Analysis was used to generate the 2007 results, This accounts for the
vea lacgest changes in the dirtribution of results from 2008 to 2009, Projects on Rung 2 had resclved all of theic
earlier idenfified resource leaks, so the latest runs have a smaller percentage of that fype of defect. Improvernents to
the newer version of Coverity Static Analysis used for Rung 2 projects identify a large number of additional cases
af uninitialized values, leading te the increaze in that<ategocy beoween 2008 and 200, Viewed alone, thatone
capabillity change ised uninitislwed value e o over 21% of the defect distribution for projects pow oa Rung 2.




Providing Value to Coverity’s Customers (' coverity

e Coverity’s Customers use large guantities
of open source In their development efforts

* Every defect fixed by an open source
project doesn’t have to be fixed by dozens
of customers



Providing Value to Coverity’s Customers P coverity

“Don’t repeat yourself”



Providing Value to Coverity’s Customers «' coverity

“Don’t repeat yourself”

“Don’t repeat someone else, either”



Examples of Specific Findings

e Success rate of projects varies widely

e Common Best Practices have been
identified, and will be incorporated into the
Scan infrastructure

 Open Source Is more widely used than
anyone expects



Q&A

e Questions?



