') coverity

Open Source SCAN project

Copyright © Coverity, Inc. 2010. All Rights Reserved. This publication, in whole or in part, may not be reproduced, stored in a computerized, or other retrieval system or
transmitted in any form, or by any means whatsoever without the prior written permission of Coverity, Inc.

e Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
e Since grown to 250+ projects

e Over 11,000 bugs fixed

Scan over time

|dentifying Bugs

€h scan.coverity.com

“Coverity's static source code analysis has proven
to be an effective step towards furthering the
quality and security of Linux.”

- Andrew Morton, lead kemel maintainer

brought o you by {f) COVETityY

Next Up: Automating and Accelerating Open Source Quality

+ Open Source Automated
Quality Symposium:
Particpate in the evolution
of scan.coverity.com and
st uith pass in the cpan
saurce cormmunity uho a2
Iaveraging aur new
technology. Dates and "Couerity has found bugs in parts of Samba that ve had previously considered robust
detalls to come.., and tested, 1¢' like having a developer on the team yith an ihuman attention to

detail.ult's making a majar cantribution to the cods quality of the Samba project”

- Jeremy Allison, Samba Team

In collsboration with Stanford University, Coverity is establishing 5 new baseline for
software qualty and security in apen source based an the analysis of over 0 of the
st aitical and widely used apan source projects in the warld, Under cantract with the
Dipartmiant of Homeland Sacunty, e Spply the |atast innzyation n sutomated defact
detaction to uncavar some of the most citical types of bugs faund in software.

+ We will also be putting up
an anline forum, FAQ, and
additional resources so stay
tuned We are making the results of our autormated analysis ausilable to the maintainers within

the open source comrmunity, Additional projects will ba added over time, Flesse dick on

the registration link to gain access, W havs been raceiving 2 high number of raquests

50 ve'll do our best to respond within 24 hours.

Downlosd the full report;
% “Measuring software

uality: A study of open A ument # |Orginal # |Linesof |Defects/ |View |Please Register]
source software” roiect lpefacts |pefacts |tods |KLOC |Rasults [to view Resuits
[amanoa__[o 108 3275|0000 |sanin |Reiter
Free Trial | e 2 127762 (o204 [simnin [Regiter
How Many Defects
arein Your Code? | ethereal |10 143 1,131,048 |0.008 sian in[Reaister
Firebird 197 163 251,334 |0.784 Sign in [Reaister
How doas your cods compare Frafox [so 108 305,380 |o.164) sian in [Reaister
o the LAMP stack? Frases0 63z cos 1se2iee 0995 siamin |Remuter
Coverity offers a fres trial Gaim 51 113 525,718 [0.157 sinin |Redister
o your code with the same: o o e

Y

AN SCAN LADDER FAQ. AMANDA CHART
ABOUT SCAN RUNG 1 - 51 Projects SAMBA CHART

o RUNG 0 - 100 Projects

DEVELOPER FAQ. AL PROJECTS POLICY STATEMENT

ACCELERATING OPEN SOURCE QUALITY

In collaboration with Stanford University, Coverity s establishing a new baseline
for software quality and securiy in open source. Under a contract with the
Department of Homeland Security, we apply the latest innovations in automated
defect datection to uncover some of the most critcal types of bugs found in
software.

o s G COVETiLY

“COVERITY'S STATIC SOURCE CODE
ANALYSIS HAS PROVEN TO BE AN
EFFECTIVE STEP TOWARDS.
FURTHERING THE QUALITY AND
‘SECURITY OF LINUX."

AXDREW MORTON,

Hage it i, S
Amanda's

2 abar o rer to defeots in Ananda Strstegist
vy Ao § 20| “recuitingin fix, colored by defect tupe
detected = A
defectswitha |5 6 ‘Coverity datects s security hols in X Windows that
singlereading | 5 4 s any usar wich s loin o gain roctprivlages
of the Sca H
analysis for 22 Amanda releases major version (2.5) of the popular
that isst ® Backup and recovery sofevare with mlestone of 0
The red defects L 100 120 1 Covertey defecs
were MEMORY Individuol defects
LEAKS. Sean.coverty.com resuls In ver 1000 satches to

coming weeks and months, we'l be providing addtional information on this
‘Amanda graph, and graphs for other projects. We will also provid more detailed
examinations of the progress projects have made, and how the analysis is being

proaces nthe frstfew sk

Other charts are avaiiable. Sas the st undsr Prograss Charts in the navbr.

OPEN SOURCE PROJECT LEADER BOARD

Ze33[0000
<a.275[0.000

Covariy Sty R

Open-Source Securky Praject

[e o =

Supporting more

open source
projects

™

) coveri

Lessons Learned from Evaluating Software

ACM.ORG JOIN ACM ABOUT COMMUNICATIONS ALERTS & FEEDS SIGH IN

COMMUNICATIONS —————

ar e
® e
ACM TRUSTED INSIGHTS FOR COMPUTING'S LEADING PROFESSIONALS ComacaneT B Digkall ey,

Blogs Opinion Browse by Subject Careers ACM Resources Subscribe

C . t. f t I I

Home » Magazine Archive » 2010 » No. 2 » A Few Billion Lines of Code Later: Using Static Analysis... » Full Tex! TOOLS FOR READERS
AC M i

his article 2 print

CONTRIBUTED ARTICLES
* Abstract s O SHARE
A Few Billion Lines of Code Later: Using Static Analysis to
» Full Text (HTML B 5 A [A][A
i, i Find Bugs in the Real World o

Full Text (PDF)

How Coverity built a bug-finding tool, and a business, around the unlimited supply of

User Comments (2)

bugsin software systems.

In the Digital Edition "
Al Bessey, Ken Block, Ben Cheif, Andy Chou, Bryan Fuiton, Seth Hallem, Charles Henri-Gros, RELATED HEWS & OFIHION

* In the Digital Library o
J Lk Asya Kamsky, Scoir McPeak, Dawson Engler

+ Stanford Finds Cheating
—Especially Among
Computer Science
Students—on the Rise

article contents

* Introduction

Few Billion Lines of
Code Later:

In 2002, Coverity commercialized® a

» Investigating Old
Not Problems in a New Light
atCsSCW, Day =

research statie bug-finding tool.
+ Churn 2 + L
surprisingly, as academics, our view of

Tl neaine commercial realities was not perfectly
» + Being Safe in Cyber
Conclusion accurate. However, the problems we X

' Acknowledgments encountered were not the obvious ones.

Discussions with tool researchers and system

* References

builders suggest we were not alone in our
+ Authors

naiveté. Here, we document some of the RELATED ACM RESOURCES

Footnotes .
more important examples of what we learned
CONFERENCES:

+ Figures

developing and commercializing an b VISAPP z010:

axhibifion and latel inh 5
Design and the Elastic Mind” exhibition
the spa

France

system-specific or interface-specific Ange:

violations (such as violations of function- .

ordering constraints). The tool, like all static ~ » XML: DTD Design e -

] - . s E =
Tables A o W industrial-strength bug-finding tool. International
S I n a I C n a S IS O . ey
Museum c We built our tool to find generic errors (such ~ Visien Theors and
3 Applications o - May 17,
After completing this
course vou will be able ta

as memory corruption and data races) and 1o Mata.oa10;
thus static inspection can find many of their violations. For example, to check the rule i e
"acquired locks must be released,” a checker would look for relevant operations (such as basics of DTD

lock() and unlock()) and inspect the code path after flagzing rule disobedience (such fusitispality, Tncluitog

bug finders, leveraged the fact that programming rules often map clearly to source code;

as lock () withnounlock() and double locking). developing valid XML.
You..

For those who keep track of such things, checkers in the research system typically ARSI A

traverse program paths (flov-sensitive) in a forward direction, going across funetion calls ResouRcES

(inter-procedural) while keeping track of call-site-specific information (context-

sensitive) and toward the end of the effort had some of the support needed to detect when |, rc ot aRaRY

- - a path was infeasible (path-sensitive).
INCiuding open source
A glance through the literature reveals many ways to go about static bug parametriclty fin

references and recursive
finding. For us, the central religion was results: If it worked, it was good, and types o

if not, not. The ideal: check millions of lines of code with little manual setup and find the
maximum number of serious true errors with the minimum number of false revorts. As

Open Source Reports

 Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009

—
{feancovtairrzon
Most Commonly Found v
Defects
Frequency of Functions by Length
Loaking at the mast commanly found defects in code can help formuate idzas about what Kind of code contructs 1z %
may cause developers to make mare ercors A type of defect might be more Bequenty found because it mvolves code i !
canstrazts that are harder to understand, more freq , o imchve 2 hard. P iing interface. L G
Frogramming defects at this level are often the rot cause of crashes, security walnerabilities, and other progeam . &
mishehavior. 53
e 2
Ranking Defect Types 23
From the inceptinn of the Scan site in 2006 until May 2008_ Scan discovered an aggregate of 27,752 defects among, 5 £
all the apen seusee projects participaring in Scan, That aumber incmised 102 wial of 38,453 defeces found by mt .
Auguse 2009, In this section, we consclidared all defect: acrozs all participating open tource projects and categorized 3 3
theem by defect types. The results ace shown in the following table. - i kil e i R
o I .
Defect Type 2008 2009 % Difference Ranking 010 BD BT @ 4 111 540 A w134 g o hs i N =
Froquency Frequescy Change
NULL Pointer Deference 27,050 2731% 14w | [R TH MR, BORIN FIHnTIOM
Hesource Leak 25.73% 2334% 239% | [
Unintentional Ignered Expresions .76 9.71% a0Ew | o
Use Before Test (NULL) 9.09% 835 025% 1 1
Use After Free 6460 591% 034 | -1
Bofer Ovefiom (etatocally allocated) 614 57 s | EY The graph is quite smooth ntl roughly the 200 LOC madk. Atthat poin, it becomes rougher, and the duta points
Deaak Uoe of Retmrraed NULL 85K T304 Eew | 5 become more sparse, This is an indication of where our soure code dara sec begins 1o become moresparee. As the Sean
Rl oy . AR YR, 5 dats set continues o grow, we would expect to see 3 very gradusl ext=nsion of the smooth area.
Hoaty gt Ketx ool Mgty ! 3 o t 2 While the 2008 repart shoired cumbers that were aggregated oa 2 per-project basis, and happeed 1o find cha avernges
Type and Allocation Size Mismatch Q62% 110% 08k | e acroas all projects were in the nejghbarhood of a modern programmeds sereen size, 2 close-up lok at the funcon
Buffer Overflow (dymamically allocated) 0318 0.21% a0 | [listribution shows no d ¥ near the Jength Ranctions, If Gid have any significant tendency
Tlee Befure Teot (negative) 021% 0.16% a0 | [to break functions up, by refuctoring; when the seren-length bonndary is passed, then the graph should show oneer
moce sudden deops at the comemon s:omen lengths as the functions over that size are broken up, and contzibute to the
Feotnote: For more descriptive information on these defect types, see Appendes I distribution of shocter finctions to the Left of the limit,
The 2008 Scan results in the above table are genecared wsing the 2006 version of Coverity Sratic Analysic. This Since the graph s clearly smcoth, with na such drops, programmers sither have oo such tendency to break functions
2006 vemion was alie wsed For the 2007 analysis of open source prjects on Rung 1. Homeve, for projeces an at sereen length, o1 do sa acely enough for it to have oo visible impact,
Rung 2, 1 newer version of Caverity Static Analysis was used to generate the 2007 results, This accounts for the
vea lacgest changes in the dirtribution of results from 2008 to 2009, Projects on Rung 2 had resclved all of theic
earlier idenfified resource leaks, so the latest runs have a smaller percentage of that fype of defect. Improvernents to
the newer version of Coverity Static Analysis used for Rung 2 projects identify a large number of additional cases
af uninitialized values, leading te the increaze in that<ategocy beoween 2008 and 200, Viewed alone, thatone
capabillity change ised uninitislwed value e o over 21% of the defect distribution for projects pow oa Rung 2.

Providing Value to Coverity’s Customers (' coverity

e Coverity’s Customers use large guantities
of open source In their development efforts

* Every defect fixed by an open source
project doesn’t have to be fixed by dozens
of customers

Providing Value to Coverity’s Customers P coverity

“Don’t repeat yourself”

Providing Value to Coverity’s Customers «' coverity

“Don’t repeat yourself”

“Don’t repeat someone else, either”

Examples of Specific Findings

e Success rate of projects varies widely

e Common Best Practices have been
identified, and will be incorporated into the
Scan infrastructure

 Open Source Is more widely used than
anyone expects

Q&A

e Questions?

