Making
Security \\\
Measurable* &

\
\
\
N
\\\\\

Monitoring Assurance of Software

- Measuring Assurance -

Robert Martin
September 18, 2012

MITRE

Today Everything’s Connected — Like an Ecosystem

Your System is) b

attackable...) ,.@
L 2N

by y
‘(-" ‘./ » X Y)
1 N ‘ b\ .(
4 A A -
;_"‘,' [rar.* (/) [&
v /| &0 . / A { ‘
/ W ,/" 1‘ -;/‘\ Y A ‘
‘ 4 [/] !\ | \/ 4 . »\ L";vh A .
Ny a8 Wy < |y
A B 's :" f r)a_ 3
A 4 ’ ‘ \,‘- " :
‘:-‘.:.\)L-" X “
\ TN / .
@k . <
) '.'1 Y 2 LS s TN
Q. ! Y A s A
‘ .4/.1 A’%-.z' - o)
¢ "Ly ?
A ,)". ot ' “', v
o o) < v'
A | y Y/ J\
A 99
}'; . ™~ ! O
v N Vi

{ N O
4 4

@9
- < When this Other System gets subverted
Secjﬁ-t;g through an un-patched vulnerability, a P N
Measurable” mis-configuration, or an application AT NN
weakness... L’

CVE 1999 to 2012

\ /o

60000 -

50000

40000 A
30000 -
20000 A
10000 A

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

25.00%
XSS
-=- buf
sqgl-inject
20.00% - _______.....//\ dot
—— php-include
infoleak
15.00% - —— dos-malform
link
\ format-string
\\ >< crypt
10.00% - .
priv
perm
metachar
5.00% 4 —r | | | int-overflow
| | w‘:l/\\.l — () —
s=——xl - @\
0.00% | | — | D

2001 2002 2003 2004 2005 2006 2007 MITRE

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions...CWEs

Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’) (79)
* Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (80)

9 » Improper Neutralization of Script in an Error Message Web Page (81)

» Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (82)

» Improper Neutralization of Script in Attributes in a Web Page (83)

* Improper Neutralization of Encoded URI Schemes in a Web Page (84)

* Doubled Character XSS Manipulations (85)

XSS » Improper Neutralization of Invalid Characters in Identifiers in Web Pages (86)
1 4 » Improper Neutralization of Alternate XSS Syntax (87)
-=- puf
Improper Restriction of Operations within the Bounds of a Memory Buffer (119)
-1N1 » Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’) (120)
Sql aneCt * Write-what-where Condition (123)
dot 19 - Out-of-bounds Read (125)
* Improper Handling of Length Parameter Inconsistency (130)
" . * Improper Validation of Array Index (129)
Bl p h p-l n C| u de * Return of Pointer Value Outside of Expected Range (466)
. » Access of Memory Location Before Start of Buffer (786)
I nfO I ed k » Access of Memory Location After End of Buffer (788)
» Buffer Access with Incorrect Length Value 805
a—— dOS -Mma IfO rm + Untrusted Pointer Dereference (822)
* Use of Out-of-range Pointer Offset (823)
link » Access of Uninitialized Pointer (824)
» Expired Pointer Dereference (825)
format-string
Path Traversal (22)
* Relative Path Traversal (23)
Cry pt » Path Traversal: '..ffiledir' (24)
: » Path Traversal: '/../filedir' (25)
pI"IV * <emmmmmmmee- 8 more here -------------- >
* Path Traversal: "..../I' (34)
pe rm Path Traversal: '.../...II" (35)
» Absolute Path Traversal (36)
meta Ch ar « Path Traversal: ‘/absolute/pathname/here’ (37)]
« Path Traversal: "\absolute\pathname\here’ (38) "
1 - » Path Traversal: 'C:dirname’ (39)
I nt Oove rfl ow » Path Traversal: "\UNC\share\name\' (Windows UNC Share) (40) ©2012 MITRE

Wouldn’t it be nice
if the weaknesses
In software were as
easy to spot and
their impact as
easy to understand
as a screen door in
a submarine...

P I —

& @&

The Security Development Lifecycle : MS0O8-078 and the SDL

[<«

>] [<] [=i] ahttp://blogs.msdn.com/sdlfarchive/ZOOSf12/18/m508-078—and-the-sdl.aspx

o JB5 L

The Security
Development Lifecycle

BlueHat SDL Sess s Wrap-up

Secure ¢

Tags
Crawl Walk Run
SDL

threat modeling

News

Blogroll

BlueHat Se

@ = Q- Google

Weilcome to MSDN Blogs Sign in | Join | Help

I | Sanc

MSO08-078 and the SDL i

Hi, Michael here.

Every bug is an opportunity to learn, and the security update that fixed the data binding bug that affected
Internet Explorer users is no exception.

The Common Vulnerabilities and Exposures (CVE) entry for this bug is CVE-2008-4844.

Before I get started, I want to explain the goals of the SDL and the security work here at Microsoft. The SDL is
designed as a multi-layered process to help systemically reduce security vulnerabilities; if one component of
the SDL process fails to prevent or catch a bug, then some other component should prevent or catch the bug.
The SDL also mandates the use of security defenses whose impact will be reflected in the "mitigations"
section of a security bulletin, because we know that no software development process will catch all security
bugs. As we hawve said many times, the goal of the SDL is to "Reduce vulnerabilities, and reduce the severity
of what's missed."”

In this post, I want to focus on the SDL-required code analysis, code review, fuzzing and compiler and
operating system defenses and how they fared.

Background

The bug was an invalid pointer dereference in MSHTML.DLL when the code handles data binding. It's
important to point out that there is no heap corruption and there is no heap-based buffer owerrun!

When data binding is used, IE creates an object which contains an array of data binding cbjects. In the code
in guestion, when a data binding object is released, the array length is not correctly updated leading to a
function call into freed memory.

The vulnerable code locks a little like this (by the way, the real array name is _aryPXfer, but I figured
ArrayOfObjectsFromlE is a little more descriptive for people not in the Internet Explorer team.)

int MaxIdx = ArrayOfObjectsFromIE.Size()-1;
for (int i=0; i <= MaxIdx; 4i++) {
if (lArrayOfObjectsFromIE[4i])

continue;

ArrayOfObjectsFromIE[i]—>TransferFromSource();

¥

Here's how the vulnerability manifests itself: if there are two data transfers with the same identifier (so
MaxIdx is 2), and the first transfer updates the length of the ArrayOfObjectsFromIE array when its work was
done and releases its data binding object, the loop count would still be whatever Maxlidx was at the start of
the loop, 2.

This isja time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
Commpn Weakness Enumeration {(CWE) classification for this vulnerability is CWE-367.

/rﬁx was to check the maximum iteration count on each loop iteration rather than once before the loop
L

atacte. i o o et i e o T T s e cback oo emeeoiblo ot oot o i

a time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
on Weakness Enumeration {CWE) classification for this vulnerability is CWE-367.

TOC TOU Iss0es. we wWill Upgate our raiming 1o agdarees s,

Ouwur static analysis tools don't find this because the tools would need to understand the re-entrant nature of
the code.

Fuzz Testing

CWE - CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (1.10)

¥ Google

(http://cwe.mitre.org/data/definitions/367.html

CuvE

Home > CWE List > CWE- Individual Dictionary Definition (1.10)

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
Time-of-check Time-of-use (TOCTOU) Race Condition

Full Dictionary View
Development View
Research View
Reports

Sources

Process
Documents
Community
Related Activities
Discussion List
Research
CWE/SANS Top 25
CWSS

Calendar
Free Newsletter

Compatibllity

Program
Requirements
Declarations

Make a Declaration

Contact Us

Search the Site

MOST DANGEROUS
SOFTWARE
ERRORS

Search by 10:_ [€

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tvpes

Weakness ID: 367 (weakness Base) Status: Incomplete

¥ Description

Description Summary
The software checks the state of a resource before using that resource, but the resource's state can change between the check
and the use in a way that invalidates the results of the check. This can cause the software to perform invalid actions when the
resource is in an unexpected state.

Extended Description
This weakness can be security-relevant when an attacker can influence the state of the resource between check and use. This
can happen with shared resources such as files, memory, or even variables in multithreaded programs.

v Alternate Terms
TOCTTOU: The TOCCTOU acronym expands to "Time Of Check To Time Of Use". Usage varies between TOCTOU and TOCTTOU.
¥ Time of Introduction

¢ Implementation

¥ Applicable Platforms

Languages
All
v Common Consequences
Scope Effect

The attacker can gain access to otherwise unauthorized resources.

Race conditions such as this kind may be employed to gain read or write access to resources which are not
normally readable or writable by the user in question.

The resource in question, or other resources (through the corrupted one), may be changed in undesirable ways
by a malicious user.

If a file or other resource is written in this method, as opposed to in a valid way, logging of the activity may not
occur.

In some cases it may be possible to delete files a malicious user might not otherwise have access to, such as
log files.

Access Control
Access Control

Authorization
Integrity
Accountability

Non-Repudiation

< »l

N

The Certified Secure Software Lifecycle Professional (CSSLP) Certification Program

r C s s L P O\ vl show software lifecycle stakeholders not only how to implement security, but how to

glean security requirements, design, architect, test and deploy secure software.

An Overview of the Steps:

(1sC)* ® 5.day CSSLP CBK® Education Program

Educate yourself and learn security best practices and industry standards for the software lifecycle through the CSSLP Education
Program.(ISC)* provides education your way to fit your life and schedule.Completing this course will, not only teach all of the
stablish a security plan across your

COMPUTER 4

& NOW AVAILABLE
FOR THE

4
TESTING
-

P

Foreword

In 2008, the Software Assurance Forum for Excel-
lence in Code (SAFECode) published the first version
of this report in an effort to help others in the
industry initiate or improve their own software
assurance programs and encourage the industry-
wide adoption of what we believe to be the most
fundamental secure development methods. This
work remains our most in-demand paper and has
been downloaded more than 50,000 times since its
original release.

However, secure software development is not only a
goal, it is also a process. In the nearly two and a half
years since we first released this paper, the process
of building secure software has continued to evolve
and improve alongside innovations and advance-
ments in the information and communications
technology industry. Much has been learned not
only through increased community collaboration,
but also through the ongoing internal efforts of
SAFECode’s member companies. This 2nd Edition
aims to help disseminate that new knowledge.

Just as with the original paper, this paper is not
meant to be a comprehensive guide to all possible
secure development practices. Rather, it is meant to
provide a foundational set of secure development
practicesthat have been effective inimproving
software security in real-world i by

bringing these methods together and sharing them
with the larger community, SAFECode hopes to
move the industry beyond defining theoretical best
practices to describing sets of software engineer-
ing practices that have been shown to improve

the security of software and are currentlyin use at
leading software companies. Using this approach

Industry
Uptake

enables SAFECode to encoura

best practices that are proveytd

and implementable even wen
i d

taken into account.

Though expanded, oufkey goals

remain—keep it confise, actiond

What's New
This edition of tfie paper prescril

practices jfave been shown to by
diverse gevelopment environme)
origingf also covered Training, R
Handfing and Documentation, t

The paper also contains two important, additional
sections for each listed practice that will further
increases its value to implementers—Common
Weakness Enumeration (CWE) references and
Verification guidance.

1200
21111
1000
'l‘l Software Assi
1

111
Qoo

SAFECode

urance Forum for Excellence in Code

Driving Security and Integrity

'SAFECode

‘ rance Forum for Excellence in Code

@@ Driving Security and Integrity

Fundamental Practices for
Secure Software Development
2ND EDITION

rification plan is a dir

detailed treatment in SAl
sefurity engineering training/ind software integrity
iff the global supply chain,#nd thus we have refined
lour focus in this paper ty/concentrate on the core
areas of design, develgbment and testing.

SAFECode members across their diverse develop-
ment environments.

It is important to note that these are the “practiced
practices” employed by SAFECode members, which
we identified through an ongoing analysis of our
members'individual software security efforts. By

The paper also copfains two important, additional
listed practice that will further
lue to implementers—Common
umeration (CWE) references and

Verificatjén guidance.

sections for ea
increases its

" SAFECode

Driving Security and Tntegrity

ample.

argAvailable that support the Threat Model-
xé:ss with automated analysis of designs and
estions for possible mitigations, issue-tracki
ration and communication related to
their Threat
ere tools are used

less. Some practitioners have ho
eling process to the point
itomate as much
jatability of ¢
of s

ion, integration with a threat database and

#as possible, raising the
process and providing another
rt with standard diagramming,

A Guide to the Most Effective Secure

f the Threat Model)
o1 the Threat HModea Development Practices in Use Today

del itself will serve as a clear ro

tive of the re;
Threat
fication, containing enough informatil

February 8,20m

each threat and mitigation can be verifieg
Epiror Stacy Simpson, SAFECode

During verification, the Threat Model and

mitigated threats, as well as the annotatd Authors P
X Mark Belk, Juniper Networks Mikko Saario, Nokia
tectural diagrams, should also be made a Matt Coles, EMC Corporation Reeny Sondhi, EMC Corporation

Cassio Goldschmidt, Symantec Corp.
Michael Howard, Microsoft Corp.
Kyle Randolph, Adobe Systems Inc.

Izar Tarandach, EMC Corporation
Antti Vaha-Sipila, Nokia
Yonko Yonchev, SAP AG

to testers in order to help define further t|

and refine the verification process. A revid]
Threat Model and verification results shol
made an integral part of the activities reg

,and tion of ing tasks.
ases, and execution of recurring tasl dedlare code complete.
CWE References An example of a portion of a test plan derived from
Much of CWE focuses on implementation issues, a Threat Model could be:
and Threat Modeling is a design-time event. There — — — ———
. rea gn igation n
I
are, however, a number of CWEs that are applicable dentified Element(s)
to the threat modeling process, induding:
o Session Gul Ensureran- | Collect session
CWE-287: Improper authentication is an example Hijacking dom session | identifiers
of weakness that could be exploited by a Spoof- identifiers of | over a number
ing threat appropriate | of sessions
CWE-264: Permissions, Privileges, and Access length and examine
B distribution and
Controls is a parent weakness of many Tamper- length
ing, Repudiation and Elevation of Privilege
threats Tampering | Process A Use SSLto Assert that
withdata |onserverto |ensurethat | communica-
CWE-3n: Missing Encryption of Sensitive Data is intransit | Process Bon | dataisn't tion cannot
an example of an Information Disclosure threat client modified in | be established
CWE-400: (uncontrolled resource consumption) transit of Sstu' the use
is one example of an unmitigated Denial of
Service threat
#i SAFECode
MI T RE 1000 Driving Security and Integrity s

o006 Code Review Introduction - OWASP (@)
@E)* @ @ (@ [http://www.owasp.org/index.php/Code_Review_Introduction o '\ 1§+ owasp Q)
Log in M
e & \
O‘N’A ::P [Go) [Search) :
The Open Web Application Security Project |
Page D eW Sourt Histor |
Javi 1 . .
T Code Review Introduction ‘
» Home
> News) o Main ; :
» OWASP Projects ««Code Review Guide History«« (Table of Contents) »»Preparation»» |
» Downloads |
» Local Chapters Contents [hide] ‘
» Global Committees 1 Introduction
» AppSec Job Board 1.1 Why Does Code Have Vulnerabilities?
> AppSec Conferences 1.2 What is Security Code Review? |
» Presentations
» Video ‘
» Press
» Get OWASP Books) "
) Get OWASP Gear Introduction
> Mailing Li
N Al:| IZQO\;:SSP Code review is probably the single-most effective technique for identifying security flaws. When used together with automated tools and manual penetration testing, code review can significantly increase
0
¥ i the cost effectiveness of an application security verification effort.
> Membership
Ref This guide does not prescribe a process for performing a security code review. Rather, this guide focuses on the mechanics of reviewing code for certain vulnerabilities, and provides limited guidance on
EEChe how the effort should be structured and executed. OWASP intends to develop a more detailed process in a future version of this guide.
> How To... ;] e fharc] c b - . ; .
N Péw 'p(:e Manual security code review provides insight into the "real risk” associated with insecure code. This is the single most important value from a manual approach. A human reviewer can understand the
rinci S y . . o o ' " " N .
>ThreatAgents context ror certain coding pract 5, dNd MaKE g SEro K me nat accoun or poth (N KEIIN00d O aliack ana (ne o NESS IMDACL O g Dréach
> Attacks Why Does Code Have Vulnerabilities?
» Vulnerabilities
) Controls MITRE has catalogued almost 700 different kinds of software weaknesses in their CWE project. These are all different ways that software developers can make mistakes that lead to insecurity. Every one
b Activities of these weaknesses is subtle and many are seriously tricky. Software developers are not taught about these weaknesses in school and most do not receive any training on the job about these problems.
) Technologies These problems have become so important in recent years because we continue to increase connectivity and to add technologies and protocols at a shocking rate. Our ability to invent technology has
) Glossary seriously outstripped our ability to secure it. Many of the technologies in use today simply have not received any security scrutiny. A
» Code SniPpets There are many reasons why businesses are not spending the appropriate amount of time on security. Ultimately, these reasons stem from an underlying problem in the software market. Because
> .NET Prot]ect software is essentially a black-box, it is extremely difficult to tell the difference between good code and insecure code. Without this visibility, buyers won't pay more for secure code, and vendors would be
> Java Project foolish to spend extra effort to produce secure code.
Language ~ WlOpaooalforthic proiacticbo balo cofiuare binare ooioicibiling ioto bha cacii of cofbuora and chost i offoc
» English Nevertheless, we still frequently get pushback when we advocate for security code review. Here are some of the (unjustified) excuses that we hear for not putting more effort into security:
» Espariol

"We never get hacked (that I know of), we don't need security”

CWE web site visitors by City

CWE Compatibility & Effectiveness Program

(SESNS)

CWE - CWE Compatibility

< > @([hnp://cwe.mitre

.org/compatible/index.html

(launched Feb 2007)

[0 AFCHome MIlHome Searchv Map/Ph/Weather/Travelv Bob's Bookmarksv CVEnOVALv OVAL shared SPAM v L

WE Common Weakness Enumeration
- A community-developed dictionary of common software weaknesses

CWE Compatibility

..........

SECURITY DATABASE |(DM Analytics VERACO'DE q FORTIFY

technologies

Secure Your Web Code

SecurityReason Astyran Pte Ltd

S O FTWARE

K:ocwork EIPARASOF T o Ssezmc SkillBridge 0 COVCI'lty

0 CENZIC @ GRAMMATECH
|PA / SofCheck IEE

ROMOTION AGENCY, JAI

i antecﬁ

WaAtCHIIRE

CODENOMICON defensics (ISC)Z CE@

(Somder bor Eaueation snd oseers
100 Anaas wrnce wnd S e

-.., OUNCE nes EG-Couneil

cigital .
| | I I l . m Software Technology " (ﬁﬂ]

Orgamzatlons

Partncnpatmg

All organizations participating in the CWE
Compatibility and Effectiveness Program are TOTALS

listed below, including t

with Declarations to Be

hose with CWE- Organizations Participating: 37
Compatible Products and Services and those

CWE-Compatible.

Products are listed alphabetically by organization name:

Products & Services: 66 -

cwe.mltre.orglcompatlble/ I

ember 29, 2006

©2012 MITRE

0006 The Web Application Security Consortium [Threat Classification Taxonomy Cross Reference View (@]

o C @ m (A http:/ /projects.webappsec.org/w/page/ 13246975 /Threat-Classification-Taxonomy-Cross-Reference-View {.}' _ 1l Google Q
The Web Application Security Consortium { login help [f)
[ciwiki |- Pages & Files Search this workspace

VIEW »

Threat Classification Taxonomy Cross Reference View

last edited by {3 Robert Auger 10 months, 3 weeks ago () Page history & Check for plagiarism

o Tags: Threat Classification

Threat Classification 'Taxonomy Cross Reference View'

SideBar ®
This view contains a mapping of the WASC Threat Classification's Attacks and Weaknesses with MITRE's Common Weakness Enumeration, MITRE's Common Attack Pattern Enumeration and WASC Projects L
Classification, OWASP Top Ten 2010 RC1 (original mapping with OWASP Top Ten from Jeremiah Grossman & Bill Corry) and SANS/CWE and OWASP Top Ten 2007 and 2004 (original mapping + Distributed Open Proxy Honeyoots
from Dan Cornell, Denim Group) « Script Mapping
: : : _ + The Web Security Glossary
WASCID | Name CAPEC | SANS/CWE Top 25 DWASP Top Ten 2010 OWASP Top Ten 2007 OWASP Top + Web Application Firewall Evaluation

Criteria
ID 2009 Ten 2004 « Web Application Security Scanner

WASC-01 Insufficient Authentication 642 - Broken A7 - Broken A3 - Broken Evaluation Criteria
uthentication and Authentication and Authentication + Web Application Security Statistics

assion Management, Session Management, | and Session + Web Hacking Incidents Database
» WASC Threat Classification

4 - Insecure Direct A4 - Insecure Direct management,
Dbject References Object Reference A2 - Broken WASC Project Leaders

Access Control « Robert Auger
WASC-02 Insufficient Authorization 4 - Insecure Direct A10 - Failure to A2 - Broken * M
Dbject References, A7 Restrict URL Access, A4 | Access Control : %ik
Failure to Restrict - Insecure Direct o Ofer Shezaf
RL Access Object Reference « Brian Shura
WASC-03 Integer Overflows A)
WASC Main Website
WASC-04 Insufficient Transport Layer Protecti 10 - Insufficient A9 - Insecure « http:/ /www.webappsec.org/
ransport Layer Communications
otection WASC Mailing Lists

« http://lists.webappsec.org/
A3 - Malicious File

Execution WASC on Twitter
« http:/ /twitter.com/wascupdates

WASC-05 Remote File Inclusion

WASC-06 Format String

WASC-07 Buffer Overflow AS - Buffer Join us on Linkedin!
Overflows + http:/ /www.linkedin.com
. 3 [groups?aid=
WASC-08 Cross-site Scripting - Cross-Site Al - Cross Site A4 - Cross Site roups7gd-83336
ripting Scripting (XSS) Scripting (XSS)
WASC-09 Cross-site Request Forgery 5 - Cross-Site AS - Cross Site Request Recent Activity @ b
equest Forgery Forgery (CSRP) . Insufficient Data Protection Working :

WASE 10 Danial af Candea ALO

[HIZLA HHES EHF= MES SE 22| YEHE]

y58 AI8510{, 2D EH 0] ZEE Blol= 57kx] 2-2 offet ZELICE

) T8 sueume gsD" e B|EE zaszny)
A Emacs ‘/._. .
, v=
= A2

¢) coverity

B4

Y HE as oMy

Ocsx21080 FHBEZBH LV REEE]

Coverity5Z AL T. V7 NI I 7ARRAEMHEICBRETS 5AT Y JIRUTOBY TY.

EEPCLIE)

o AFYY voroz7) e fZ1E mﬁuﬁfﬁmﬁuzas» e LE—F xaﬁo&mﬁm}
) ' ‘ A Emacs ah

&
Korean =

Project 1

Project 2

s9hve9sho

Project 3

Japanese

O coverity CWE Coverage —
Implemented...

Coverity Coverage for Common Weakness

Enumeration (CWE): Iava

‘ = TS CWE IDs mapped to Klocwork Java issue types - current http://www.klocwork.

BAD_EQ

' ’ ¢) coveri _
= o ty' CWE IDs mapped to Klocwork Java issue

GUARDED_BY_VIOLATION

INDIRECT_GUARDED _BY [types
366 VIOLATION
NON_STATIC GUARDING STATIC = From current
ST Coverity Coverage For Common Weakness
1 T . CWE IDs mapped to Klocwork Java issue types
e | e oome e o | Enumeration (CWE): C/C++
| [BAD_OVERRIDE | See also Detected Java Issues.
L DC.EXPLICIT_DEPRECATION _
; e CIR SRS [T I T 5 ‘ . T T = escription
| MUTABLE_COMPARISON Use of untrusted scalar value CWE IDs mapped to Klocwork C and C++ issue types/ja -... htp://www.klocwork
398 MUTABLE_HASHCODE TAINTED_SCALAR | Untrusted value as an argument Alter control flow goes to native code
Use of untrusted value Arbitrary control of a resour tampering
- B Use of untrusted string value Arbitrary code execution ction
ST CWE IDs mapped to Klocwork C and C++
EN I www.cenzic.com | (866) 4-CENZIC (866-423-6942) R | Ce o i) B . t I.
Out-of-bound:
s el e S iIssue ypes ja Working Directory
Stray pointer arithmetic B
) ;) . | COM bad conversion KﬁVR | From current (Stored XSS)
Cenzic Product Suite is CWE Compatible | Overtowed amay ndox wite owED ok CCandCes L (Reflected XSS)
Cenzic Hailstorm Enterprise ARC, Cenzic Hailstorm Professional and Cenzic ClickToSecure are B % SOverfowed poier wite CWE IDs mai;::s,p;,ocwoork ggmoéﬂ ‘S:Se (ypes,lalssue ypes (Stored XSS)
compatible with the CWE standard or Common Er as by Mitre Using invalid iterator Arbitrary code execution b (Reflected XSS)
Corporation. Web security assessment results from the Hailstorm product suite are mapped to = RIS Y
the relevant CWE ID's providing users with additional information to classify and describe |icscsaltersion contalner mismatch Altar conteol flow Z DA DI# Detected C and C++ Issues.
common weaknesses found in Web applications. | Splice iterator mismatch | Readsensitive information from the
” . R . . Allocation size error Denial of service CWE ID Bz nts
For additional details on CWE, please visit: http:/cwe.mitre.org/index.html muums = { [ABV.TAINTED RIEEAAICLBNY T 7 F—/N—J0O—
- . 's: E = e 20 SV.TAINTED.GENERIC SRI&HEXF5I 7 — A DIEFA [
he following is a mapping between Cenzic’s SmartAttacks and CWE ID's: Out-of- .
= B p:/lcwe.mitre.org A . . | Z i :
i o P http:/ it SV.TAINTED.ALLOC_SIZE XE'J#I UK TIZHLF B RAETEDEHD orms: validate method
Out-of-bounds access g
i | = = = - /data/definitions
Cenzic 1 § - s
SmartAttack CWE ID/s 5 Qut-of bounds wits —_ smik} /20.html) SV.TAINTED.CALL.INDEX_ACCESS =BBIFUHE L [CH1 B RIRE lorms: inconsistent validate
Name | Avgument cannot be negative | BRODES 27TV T AL TOER
Application)) Copy into fixed size buffor | 22 e Splittin
1 |Exception CWE-388: Error Handling Destnaton e to0 emal (http://cwe.mitre.org SV.CUDSEMISSINGiABSOLUTEiPATH 271)L OO— KT Ok piting
icati - 1 /data/definitions INZ DARMER
2 éggggzg‘;"(ws) CWE-388: Error Handling | Possibe bufe overow 22 0ot
 too small for type Unauthorized code executi
Application Path . . B S 73
3 Dclosure CWE-200: Information Leak (rough match) Buttr overtow Denial of service (http://cwe.mitre.org [SV.CUDS.MISSING_ABSOLUTE_PATH 7 7 JL(DOI— X T D#e3 px used for array access
4 Authentication CWE-89: Failure to Sanitize Data into SQL Queries (aka Copy into fixed size buffer /data/definitions INZDRER B
Bypass 'SQL Injection’) (rough match) | Destination buffer too small /73.html)
5 Authorization CWE-285: Missing or Inconsistent Access Control, CWE-425: 74
Boundary Direct Request (‘'Forced Browsing') i (http://cwe.mitre.org NS [N
L SV.TAINTED.INJECTION YV N /2173y
o BiindsaL CWE-89: Failure to Sanitize Data into SQL Queries (aka [datal/definitions 226/1110:35 AM
Injection 'SQL Injection’) /74.html)
7 Blind SQL CWE-89: Failure to Sanitize Data into SQL Queries (aka 77
Injection (WS) 'SQL Injection’) (http://cwe.mitre.org |SV.CODE_INJECTION.SHELL_EXEC ¥ I)LRTADIYV N 1~
g Browse HTTP CWE-200: Information Leak /data/definitions 17v3Y
from HTTPS List /77 html)
9 Brute Force Login CWE-521: Weak Password Requlremerns 78 } _ NNTS.TAINTED 5k43E 1 —F A AN EED/NY T 7 A —/S—F0—
10 Buffer Overflow CWE-120: Unbounded Transfer (‘Classic Buffer Overflow') (http://cwe.mitre.org | e 1| gy =
/data/definitions - SR T g
11 ES\'l\Jlfée)r Overflow CWE-120: Unbounded Transfer ('Classic Buffer Overflow') /78.html) SV.TAINTED.INJECTION IV R 72217 3>
42 (Check Basic Auth \CWE-200: Information Leak 88 SV.TAINTED.INJECTION VY N 4221923
over HTTP (http://cwe.mitre.org [NNTS.TAINTED Kt 1—SANNEERD/NY D7 F—/N—20—
Check HTTP CWE-650: Trusting HTTP Permission Methods on the Server
. Methods Side
10of7 2/26/11 10:34 AM
‘Cenzic CWE Brochure | October 2009 1
et o kT e gtz vt of G,
The Cncclog,Hatom Eters ARC, nd GoShid are rademark of Cene, .
@209 Gz, . s reserves
’ ©2012 MITRE

CWE Version 2.3 plans

= 29 CWEs with modified demonstrative examples
- From cleaning up examples from CLASP
= Working on the potential mitigations.
- Early CWE schema did not explicitly support a
mitigation phase, and we have a lot of mitigations

without that data.
- We are adding phase information to those elements,

and sometimes removing inappropriate or useless
mitigations
- (e.g. for weakness X, simply saying “don’t do X”
is rarely very helpful)
- To-Date, we’ve modified 270 CWEs for mitigations

with updated phase information.

©2012 MITRE

o) US rolls out plan to protect busi o PUB! 'm MEDIA"
Stockhouspc—[|

"0 COMPUTERW
MarketplaC@ Contact | About | Local Air Times | Newsletters | Su

U.S. Rolls Out Plal

HOME NEWS TECHNOLOG

Fox Ne

LATEST NEWS

Fair&

Re

TUESDAY, 28 JUNE 2011

ASB Bank, Potentia and Hairy

icl Associated Press -
s O ssraisoupantopd YOU PIQ U.S. launches plan to protect business

IT and markotlng are a killer

Shows Sections Topics Podcasts

U.S. EUROPE ASIA

- e e [Jepartment of Homeland Security wants to help

Video ForbesWoman CEO Network
Home : Sci-Tech : U.S. launches plan to protect business websites

LOLITA C. BALDOR, 06.27.11

By John Moe websites

m muﬁbhﬁgtnu M Marketplace Tech

N U.S. rolls

0 Comments

If you have a
about security

Most emaile

B Some Fl
urgent-d
will be rg
post prid
common)

Bl Most exf
home in
Hillsborg
estate m
got a litt]

Rl Convictel
driver wi

license g Hackers used
Tampa

used in an SQI

7~ N
= NECNu).
CAVIDIAN BUSIVESS

o

Home News & Markets Blogs & Ana‘

HOT TOPICS: Leadership Q&A Retirement Busme o »-:-—-

— security comp1__

Ler Image

Topics News & Markets

DHS rolls out plan to help protec:
from hackers
By Lolita C. Baldor, The Associated Press | June 27, 2011

to see what your friends recommend.

Like 2 Share

g a growing threat of cyberattacks against
tect themselves and harden their Internet

WASHINGTON - Businesses facing a growing threat of (
more tools to protect themselves and harden their Intern

MITRE

Rank

Score

[1]

93.8

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

[2]

83.3

Improper Neutralization of Special Elements used in an OS Command ('0S Command
Injection’)

[3]

79.0

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

[4]

77.7

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

[5]

76.9

Missing Authentication for Critical Function

(6]

76.8

Missing Authorization

(7]

75.0

Use of Hard-coded Credentials

(8]

75.0

Missing Encryption of Sensitive Data

[9]

74.0

Unrestricted Upload of File with Dangerous Type

[10]

73.8

Reliance on Untrusted Inputs in a Security Decision

[11]

73.1

Execution with Unnecessary Privileges

[12]

70.1

Cross-Site Request Forgery (CSRF)

[13]

69.3

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[14]

68.5

Download of Code Without Integrity Check

[15]

67.8

Incorrect Authorization

OEV‘\RTM 5

@0“ Us
T .
/)
@)
<,
&7 7Y 10

4.

>

LAND S0

up from 2

up from 9
same

down from 1
up from 19
split of prior #5
up from 11

up from 10
down from 8
down from 6
new enlry
down from 4
down from 7
up from 20
split of prior #5

-10

Scoring Weaknesses Based on Context

Archetypes: Vianettes:

 Web Browser User Interface 1. Web-based Retail Provider
 Web Servers 2. Intranet resident health

« Application Servers records management

- Database Systems system of hospital

. ggls_ktop Systems

Web
g/ﬂ/\/ Browser RN
Web
Browser
Web
Browser)\{;/
INTERNET r = 2
1 Router Web Application J Database
Servers Servers Systems

DMZ |
—— 1111 I 111 INTRANET
| 1 | | |

; Web Desktop Desktop Desktop Desktop
Application Servers Systems Systems Systems Systems
Servers Web Web — web [~ H wen [
Browser Browser Browser Browser

MITRE

©2012 MITRE

The Software Supply Chain

\/\ Other ”
Programs ”)

Program
Office

Outsource

Prime
Contractor

Foreign
Acquire Develop
In-house
Off-Shore l/_\/ Foreign
@ Location
Software

Foreign

us
l Developers

Acquire

Outsource

~)

Develop
In-house

“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure Software
Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis of May 2004
GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks” ©2012 MITRE

v & = cacthitatia,
- & ,,/ \\\ ¥ :
S SNow pack . /\ e /”\
\ - ~ LR ,/—_ A 2 / ‘
. - ~ -5 A '.' . “,

A . 3 FEX E - N,

» A Agricultural Use |

g M e

SECURITYS:PRIVACY

oty ety Pt oy el Sy

STATIC ANALYSIS

The Software Industry’s
“Clean Water Act” Alternative

2

Robert A. Martin and Steven M. Christey | MITRE

Following the water industry’s example, the authors advocate for implementing processes that can
examine software and remove the most dangerous contaminants, given its intended use.

M uch like the water we use in diverse daily activi-

ties across all aspects of our world's ecosystem,
the actual sources of, and manner in which we receive,
the software in our cyberecosystem are often unknown
and possibly unknowable. Over time, the water industry
has developed water-quality measurements and meth-
ods that give users trust in the fact that harmful water
qualities aren't present. This is due to the industry's
technical ability to specify and measure water qualities,
such as temperature, hard fume, and pollutants,
as well as the regulatory framework that mandates that
those who offer water check these characteristics for
dangerous levels according to the water’s intended use.
When harmful levels are detected, mitigations and con-
trols can be applied and verified, including water soften-
ers, Gltration, settling ponds, and cooling towers.

The software industry must implement similar pro-
cesses and technical methods to examine software for
d contaminants, given its intended use, and
ensure that appropriate mitigations and controls are in
place to remove the harmful characteristics. Several soft-
ware assurance strategic initiatives, cosponsored by the
US Department of Homeland Security National Cyber
Security Division, attempt to make this process easier.
The C Weakness E tion (CWE; hnttps://
cwemitre.org) offers the industry a list of potentially

May/lune 2012 Copublshed by the ILLL Compuser and Relabilzy Societes

dangerous software contaminants, and the C
Weakness Scoring System (CWSS; https://cwe.mitre.
org/cwss) and the Common Weakness Risk Analysis
Framework (CWRAF; https://cwe.mitre.org/cwraf)
provide a standard method to identify which of these
contaminants are most harmful to a particular organiza-
tion, given the software’s intended use.

In this article, we define an approach for organiza-
tions to document software’s security-relevant capa-
bilities and rank the various potential technical impacts
from CWEs so those CWEs with the most impact to
an organization can be prioritized for mitigation. By
addressing vulnerable software and finding systematic
and verifiable ways to remove these weaknesses, soft-
ware providers can improve customers' trust in their
systems and possibly avoid a regulatory solution, which
might have unintended consequences.

Background

In the late 1990s, the sharing, discussing, measuring,
and reporting of activities surrounding software prod-
uets’ vulnerabilities was d and cumber-
some to manage. With the help of industry, academia,
and government, MITRE attempted to change this by
introducing the Common Vulnerabilities and Expo-
sures (CVE) effort (https://cvemitre.org). CVE lets

1540-755312/531.00 £ 2002 ILL

Technical Impacts — Common Consequences

o006

CWE - CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) (2.1)

c] (-' ¥ Google

@] [([cwe.mitre.org/data/definitions/89.html

C.W

Common Weakness

A Community-Developed Dictionary of

Enumeration

Software Weakness Types

TOP 25

lltl lull(lﬂt —
:nnnns W\
by ID:

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs
Related Activities
Discussion List
Research
CWE/SANS Top 25
cwss

CWRAF

T-Shirt

News

Calendar

Free Newsletter
Compatibility
Program
Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Search the Site

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Weakness ID: 89 (Weakness Base)
¥ Description

Description Summary

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary
user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that modify the back-end database, possibly including execution of

system commands.

Status: Draft

SQL injection has become a comq
even a minimal user base is likel
data planes.

¥ Time of Introduction
® Architecture and Design
e Implementation
e Operation
¥ Applicable Platforms
Languages
All
Technology Classes
Database-Server
¥ Modes of Introduction

This weakness typically appears i

¥ Common Consequences

Scope Effect

Confidentiality Technical Impact: Reg
Since SQL databasq

Access Technical Impact: Byp
Control If poor SQL commal
the password.
Access Technical Impact: By
Control If authorization infq
vulnerability.
Integrity Technical Impact: Mo(

Just as it may be pi

MITRE

¥ Common Consequences

Scope
Confidentiality

Access
Control

Access
Control

Integrity

Effect
Technical Impact: Read application data

Since SQL databases generally hold sensitive data, loss
Technical Impact: Bypass protection mechanism

If poor SQL commands are used to check user names af
the password.

Technical Impact: Bypass protection mechanism
If authorization information is held in a SQL database, if
vulnerability.

Technical Impact: Modify application data

Just as it may be possible to read sensitive information,

©2012 MITRE

Technical Impacts —
Common Weakness Risk Analysis Framework (CWRAF)

Modify data

Read data

DoS: unreliable execution

DoS: resource consumption

Execute unauthorized code or commands
Gain privileges / assume identity

Bypass protection mechanism

Hide activities

MITRE ©2012 MITRE

Technical Impacts for CWE Entries

Note that this list is likely to change in future CWE versions.

CWE-89 (SQL Injection) has three technical impacts as listed in the
Common_Consequences element of the CWE entry:

e Read application data

e Modify application data
e Bypass protection mechanism

For CWE-120 (CIanic Buffer Overflow), the listed technical impacts are:

e Execute unauthorized code or commands
e DOS: crash / exit / restart

ID

Name

Subscore

Max

Technical Impacts and
Importance Subscores

CWE-89

SQL Injection

* Read data (8)
* Modify data (8)

* Bypass protection mechanism

(7)

CWE-120

Classic Buffer
Overflow

10

* Execute unauthorized code or
commands (10)

* DoS: unreliable execution (4)

Scoring Weaknesses Discovered in Code using CWSS

Analysis

Vignette
Technical Impact
Scorecard

Line
Line
Line
Line 212:
Line

Scoring
Engine

MITRE

Steps:

1. Establish weightings for the
vignette

2. Run code through analysis tool(s)

3. Tools produce report of CWE’s
found in code

4. CWSS scoring engine
automatically scores each CWE
based on vignette definition

5. Go to step 2 for each piece of

code applicable to this vignette

Line 212: CWE-9: 9.9
Line 72: CWE-84: 7.9
° Line 23: CWE-109: - ©
Line 104: CWE-482: 3.1
Line 213: CWE-754: 0.0

Step 1 is only done once — the rest is automatic

CWRAF/CWSS in a Nutshell

CWSS CWE

Score
97 CWE-79
95 CWE-78
94 CWE-22
94 CWE-434
94 CWE-798
93 CWE-120
93 CWE-250
92 CWE-770
91 CWE-829
91 CWE-190
91 CWE-494
90 CWE-134
90 CWE-772
90 CWE-476
90 CWE-131

CWSS

Scoring
Engine

User-defined
cutoff

W is all possible weaknesses; Wd is all known weaknes$éxs? (CWE)

“Vignette”

Most
Important
Weaknesses

CWE Coverage Claims

Set of CWE’s a capability claims to
cover

Tool A

Most
Important

Weaknesses
(CWE'’s)

Tool B
Pen

Testing

Service Which static analysis tools and Pen Testing
services find the CWE’s | care about?

MITRE ©2012 MITRE

For the software we’re responsible for

Notional

Attacks that
target these

weaknesses

N

Weaknesses

we really care
about

How do we identify
these?

how can those weaknesses be attacked?

What types of attacks should | test my system against?

CWSS
Scoring

Engine
CWSS
Score CWE
97 CWE-79
95 CWE-78
94 CWE-22 W q
94 CWE-434
94 CWE-798
Most
93 CWE-120 Important
93 CWE-250 Weaknesses
921 CWE-770
91 CWE-829
91] CWE-190
91 CWE-494
A E—— CWE Related CAPEC ID’s
90 CWE-772
90l CWE-476 CWE-79 CAPEC-232, CAPEC-106, CAPEC-19, ...
90| CWE-131 CWE-78 CAPEC-108, CAPEC-15, CAPEC-43, CAPEC-6,

Common Attack Pattern Enumeration and Classification

CWSS for a Technology Group

Web Application Technology Group Top 10 List

CWE Top 10 List for Web Applications can be used to:
* Identify skill and training needs for your web team
* Include in T's & C’s for contracting for web development
* Identify tool capability needs to support web assessment

MITRE ©2012 MITRE

y Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Types el P
SOFTWARE. il (7

oy

ERRORS

CWE List

Full Dictionary View
Development View

Research View
Reports

Sources
Process
Documents
FAQs

SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

CWSS
CWRAF
CWE/SANS Top 25

Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Free Newsletter
Contact Us

Search the Site

Section Contents

CWRAF
Introduction
CWSS Scoring in CWRAF
Creating Your Own Vignettes
Future Versions and Activities

Common Weakness Risk Analysis Framework (CWRAF™)

CWRAF provides a framework for scoring software weaknesses in a consistent, flexible, open manner, while
accommodating context for the various business domains. It is a collaborative, community-based effort that is
addressing the needs of its stakeholders across government, academia, and industry. CWRAF is a part of the

Common Weakness Enumeration (CWE™) project, co-sponsored by the Software Assurance program in the Fhange Log

National Cyber Security Division (NCSD) of the US Department of Homeland Security (DHS). Vignettes -
Tech Groups and Domains

CWRAF benefits: Archetypes

CWRAF FAQs
¢ Includes a mechanism for measuring risk of security errors ("weaknesses") in a way that is closely Other Items
linked with the risk to an organization's business or mission. CWSS
* Supports the automatic selection and prioritization of relevant weaknesses, customized to the specific Terms of Use
needs of the organization's business or mission.
¢ Can be used by organizations in conjunction with the Common Weakness Scoring System (CWSS™) to
identify the most important weaknesses for their business domains, in order to inform their acquisition
and protection activities as one part of the larger process of achieving software assurance.

CWRAF and CWSS allow users to rank classes of weaknesses independent of any particular software package,
in order to prioritize them relative to each other (e.g., "buffer overflows are higher priority than memory
leaks"). This approach, sometimes referred to as a "Top-N list," is used by the CWE/SANS Top 25, OWASP
Top Ten, and similar efforts. CWRAF and CWSS allow users to create their own custom Top-N lists.

CWRAF Version 0.8.1

¢ Introduction

o How to Use CWRAF

o Relationships between CWRAF, CWSS, and CWE
o CWSS Scoring in CWRAF

o Scoring Weakness Findings Using Vignettes

Vignettes — Technology Groups & Business/Mission Domains

Business/Mission
Domains

Technology

Web
Applications

Vignette
Real-Time for
g;;t::%c;ed Domain/

Tech Gp
Control N

Systems

S |

End-Point
Qommon Vignette for Technology Group

Computing
Devices

Database &
Storage Sys

Operating
Systems

Identity Mngt
Systems

Common Vignette for Domain

/

Enterprise
Sys Apps

<l
\
e~
- O
® o
53g
&S
_———

Cloud
Computing

Common Weakness Risk Assessment Framework uses Vignettes with Archetypes to identify top CWEs in respective Domain/Technglggy (areups

ay/

Common Weakness Enumeration
A Communiny -Developed Dictionary of Software Weaksess Types

Home > CWRAF > CWE List > CWRAF - Vignette Overview Matrix

CWRAF - Vignette Overview Matrix

Tl Detionary View CWRAF
Develazmert View Introduction
————— Copyright © 2012 The MITRE Corporation CWSS Scaring In CWRAF
Reperts http://owe mitre.ong/onrat/ Creating Your Own
Vigneties
Future Versions and
Saurom Activities
Process Change Log
Decarerts CWRAF Data
A Vigneties
Overvien Matrix
e B cwRraF version: 0.5.2 Date: July 3, 2012 R
— Domaing
Dacusuicn Lat Archetyoes
Dacimien Acchives CWRAF FAQ‘
D" Project Coordinator: Document Editor: (O Thurwn u
cwss Bed Martin (MITRE) Steve Crvistey (MITRE) i r.'.\l "55"'
CWsAr
Terms of Use
CWL/SANS Tap 35
e CWRAF - Vignette Overview Matrix
Coverage Cairu
Representation
:::’::T: This matrix provides an overview of the vignettes that are being actively defined within CWRAF, as summarized basad on their domains and technology groups.
p— Tach G';"o:"a{ngu""m banking: finance | chemical | ecomm | o0 energy evoting human- res|[natl- defense | pub- heaith soc-media || telecom
Tree Newalette:
n-trade, smart-meter, smart-qrid-RUS, smart-grid-qw, elec-abs-int, evoting- med-billing, soc-net, tel-ras,
I Web Appications Ie-banklng reall-wiw req-elec, scada-hist, web-scada-hmi Intemnet, corp-vote it med-device elec-date [[web-mail
Real-Time Embedded
systems |srnart-meter, smart-grid-RUS, smart-grid-qw ’ evoting-DRE weap-sensori(med-device
|srnan-meter, smart-grid-RUS, smart-grid-gw,
A — chem-flow reg-elec, scada-hist, web-scada-hmi
End-Point Computing
Devices first-resp med-device
Database & Storage
systems 9 e-bankin retall-www scada-hist, web-scada-hmi ’ evoting-DRE lemp-com med-billing
|G'L'3L"‘I. evoting- med-biling,
Operating Systems retall-www web-scada-hmi ‘ Intemet. corn-vote med-device
Identity Management
Systems
Enterprise Systems & elec-abs-int, evoting- med-billing,
Appiications e-bankin retall-www scada-hist, web-scada-hmi ’ r—p——— lemp-com med-device
Cloud Computing |] |
Enterprise Security
Products
evoting-DRE, evoting-
Network Communications web-scada-hmi ’# el

Domain Summary

This is an up-to-date list of domains as used by CWRAF. For each domain, a list of associated vignettes is provided.

Domain

Description

e-Commerce

The use of the Internet or other computer networks for the sale of products and services, typically using the WWW.

Vignettes: Web-Based Retail Provider

Banking & Finance

Financial industry, including depository financial institutions (banks, thrifts, and credit unions), insurers, securities brokers/dealers, investment
companies, some financial utilities, and their associated regulatory systems and agencies.

Vignettes: Financial Trading, Online Banking

Smart Grid (electrical network through a large region, using digital technology for monitoring or control), nuclear power stations, oil and gas
transmission, etc.

Energy Vignettes: Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow Control,
SCADA Historian, Distributed Production Facility Management using SCADA Web-based HMI
Chemical processing and distribution, etc.
hesnic Vignettes: Chemical Flow Control
Plants and distribution channels, supply chain, etc.
Manufacturing No vignettes defined.
Aerospace (such as safety-critical ground aviation systems, on-board avionics, etc.), highway, maritime transportation, mass transit, pipeline
Shipping & systems, and rail.
Transportation

No vignettes defined.

National Defense

Weapon systems, Intel networks, Defense Industrial Base, etc.

Vignettes: Weapon system sensor

Homeland Security

CBP, Coast Guard, Secret Service, TSA, etc.

No vignettes defined.

Vignette Summary

|banking-finance

Financial Trading

Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and
inventory.

Online Banking

The web-based interaction between a bank, credit union, or other financial institution and its consumers for managing accounts, paying
bills, and conducting financial transactions.

|chemical

Chemical Flow Control

A SCADA-based flow control system for a chemical plant. Underlying technology - heavy C usage. Systems developed in pre-Internet era
with management consoles interfacing to them.

|ecomm

Web-Based Retail Provider

Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and
inventory.

lemerg-svc

IFirst Responder

|First responder (such as fire, police, and emergency medical personnel) for a disaster or catastrophe.

|energy

|Household Smart Meter

|Meter within the Smart Grid that records electrical consumption and communicates this information to the supplier on a regular basis.

Smart Grid remote utility
server

Obtains information from smart meters through neighborhood gateways.

Smart Grid Neighborhood
Gateway

Appliance between smart meter and remote utility server.

Regional Electricity Flow
Control

Flow control for an electricity network throughout a relatively large region, to further connect suppliers and consumers. Power now
enters the grid from both sides (classic provider, but also home-to-provider e.g. home photo-voltaic and wind turbines in homes and
throughout the landscape). System needs to have "smarts" to the load leveling capabilities of the grid which is basically a large
distributed SCADA-type system.

SCADA Historian

Historian server for archival and analysis of data for a SCADA system. Contains 2 database backend and is accessible via a web
interface. Access to the server is typically restricted to a DMZ or internal network.

Distributed Production Facility

Management using SCADA
Web-based HMI

A web-based Human Machine Interface (HMI) for SCADA systems. Users can visualize and control industrial automation processes in
real-time from a control interface directly in communication with remote sensors and data collection points. All facets of production can
be monitored and managed from a web browser.

The HMI uses various frameworks (Java, .NET, etc.) with Restful Architecture (AJAX, XML, SOAP, XSL, and WML).

ClE

CI/SS
C//RAF

TOP 25

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tyvpes ";a%“i"n't“’

ERRORS

CWE List

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs

SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

CWSS
CWRAF
CWE/SANS Top 25

Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Free Newsletter
Contact Us
Search the Site

CWRAF
Introduction
CWSS Scoring in CWRAF
Creating Your Own Vignettes
Future Versions and Activities

Creating Your Own Vignettes

Currently, there are approximately 20 Vignettes and Technical Scorecards, but anyone can create their own
Vignette and its accompanying Technical Scorecard to identify which CWEs are most significant to their
business and applications. This section will help guide you through that process.

One of the items found in these sample Vignettes is the "Archetypes". A list of the currently defined Change Log
Archetypes that are available for use in describing Vignettes is here. If there are new Archetypes you need ¥;9c'|‘f;: AT —
just identify them and send them to cwe@mitre.org and we can add them to the list. Archetype:

CWRAF FAQs

These Archetypes are used as the context for describing the technical elements utilized by the application
described in the Vignette.

Terms of Use

There are two tables for each Vignette, "Vignette Definition" and "Technical Impact Scorecard".

Vignette Definition A

Creating a Vignette Definition basically comes down to filling in the Vignette Definition table. Below is an
example Vignette Definition table with a specific Vignette for a Web-Based Retail Provider described. The
Vignette Definition is meant to talk about what business issues are of concern for the application. Is the
application dealing with PII? Credit card (PCI-relevant) data? How bad is each of the 8 Technical Impacts
given what the application is doing for a business (in the business's operational context).

[Name Web-Based Retail Provider

Iip retail-www

| Maturity |under-development

|Pomain jecomm

5|,,,w |Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database

R v

CWRAF - Archetypes

Following is a list of the archetypes that are used in CWRAF.

Anti-Virus Program

Authentication Server

Teleworking - Remote Access Server, Teleworking - Web Mail

IBZB Communications |

Medical Billing

|Custom applications |

Web-Based Retail Provider, Online Banking, Medical Billing, SCADA Historian, Distributed Production Facility Management using SCADA

Database Web-based HMI, Employee Compensation
Developmedt State or Local Elections using eVoting via an Internet web application
Framework

|Digital certificate |

Distributed Control
System (DCS)

|Docu ment Processing |

Human Medical Devices, Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, State or Local Elections

Embedded Device

using eVoting via Direct Recording Election Machines., Weapon system sensor

Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via Direct Recording Election

Endpoint System

Machines.

Firewall

Web-Based Retail Provider, Medical Billing, Human Medical Devices, Distributed Production Facility Management using SCADA Web-based HMI,

Generakl-purpose 0S

State Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via an Internet web

application, Corporate Shareholder Internet voting

Infrastructure as a
Service (IaaS)

Internet i Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via an Internet web application
Communications

SZEE s SunpOENg Financial Trading

frameworks

Laptop

Modem

State or Local Elections using eVoting via Direct Recording Election Machines.

Communications

N-tier distributed

Financial Trading

PDA

But you also needed to deal with the people that are
out there trying to take advantage of vulnerabilities
and weaknesses in your technologies, processes, or

practices...

Cross-site Scripting
(XSS) Attack (CAPEC-86)

Improper Neutralization
of Input During Web Page
Generation (CWE-79)

| SQL Injection Attack (CAPEC-6

. "

—— 2

What are the Attacks that would be Effective Against Your Weaknesses?

1 CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Summary

[Weakness Prevalence [High [consequences [Data loss, Security bypass http://cwe.mitre.org
|Remediation Cost | Low |Ease of Detection |Easy

|Attack Frequency | Often IAttacker Awareness |High

Discussion

These days, it seems as if software is all about the data: getting it into the database, pulling it from the database, massaging it into information, and sending it elsewhere for
fun and profit. If attackers can influence the SQL that you use to communicate with your database, then suddenly all your fun and profit belongs to them. If you use SQL
queries in security controls such as authentication, attackers could alter the logic of those queries to bypass security. They could modify the queries to steal, corrupt, or
otherwise change your underlying data. They'll even steal data one byte at a time if they have to, and they have the patience and know-how to do so. In 2011, SQL injection
was responsible for the compromises of many high-profile organizations, including Sony Pictures, PBS, MySQL.com, security company HBGary Federal, and many others.

Technical Details | Code Examples | Detection Methods | References

http:/icapec.mitre.org

Prevention and Mitigations

Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, consider using persistence layers suc|

Implementation

Architecture and Design Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not
If available, use structured mechanisms that autor{ |being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the
validation automatically, instead of relying on the d chances of success.

Process SQL queries using prepared statements, p If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
dynamically construct and execute query strings w information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.

Architecture and Desian, Operation In the context of SQL Injection, error messages revealing the structure of a SQL query can help attackers tailor successful attack strings.

Run your code using the lowest privileges that are
That way, a successful attack will not immediately
administrator, especially in day-to-day operations.
Specifically, follow the principle of least privilege w
the requirements of the system indicate that a use|
on all database objects, such as execute-only for s Notes: An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs
that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some
Architecture and Design manual effort may be required for customization.

For any security checks that are performed on the
by modifying values after the checks have been pe] Operation, Implementation

Implementation If you are using PHP, configure your application so that it does not use register_globals. During implementation, develop your application so that it does not rely on this feature, but be wary of
If you need to use dynamically-generated query st implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

conservative approach is to escape or filter all char|
are still needed, such as white space, wrap each al Related CWEs
Instead of building your own implementation, such|
that parameters have certain properties that makej

Operation

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth.

Effectiveness: Moderate

[CWE-90 [Improper Neutralization of Special Elements used in an LDAP Query ("LDAP Injection')
[CWE-564 [SQL Injection: Hibernate

|CWE—566 |Authorization Bypass Through User-Controlled SQL Primary Key

|CWE—619 |Dang|ing Database Cursor ('Cursor Injection')

Implementation
Assume all input is malicious. Use an "accept know|

Related Attack Patterns

CAPEC-IDs: [view all

43

MITRE ©2012 MITRE

0606 CWE CWE-89: Improper Neutralization of Special Elements used in an SQL Command (SQL Injectlon') a. 10)
aﬁ ﬁ ‘3 @ . Wi http //cwe.mitre.org/data/definitions/89.html m Google '

< W Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Types

Home > CWE List > CWE- Individual Dictionary Definition (1.10)

MOST DANGEROUS
SOFTWARE

ERRORS
Search by ID:] ©

COTEE CWE-89: Improper Neutralization of Special Elements used in an SQL

Full Dictionary View - -

seepmentvien | GOMMand ('SQL Injection')

Research Vi

Re:; = Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
XS Weakness ID: 89 (Weakness Base) Status: Draft
Sources ¥ Description

Process e

AR Description Summary
The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it
Related Activities does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a
Discussion List downstream component.

poseh Extended Description

CWE/SANS Top 25

cwss Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs
m to be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
Py insert additional statements that modify the back-end database, possibly including execution of system commands.

Free Newsletter SQL injection has become a common issue with database-driven web sites. The flaw is easily detected, and easily exploited, and
as such, any site or software package with even a minimal user base is likely to be subject to an attempted attack of this kind.
Program This flaw depends on the fact that SQL makes no real distinction between the control and data planes.

Requi ts

De::::::; ¥ Time of Introduction

N e Architecture and Design

Contact Us ¢ Implementation

« Operation

v Applicable Platforms

Languages
All

Technology Ci
MITRE coesener

® Gooele Earth
J7AF) RERE) FoRlv) U—INT) BA0A) AJLTH)

Seventy
AEmergency A Critical ;;f

\Z

o ste 9 P
0 &_‘,{L mect on~ ! O'L n eouo Datecte

| AN WEST : ip Yh b ; Lruectton rob%'. :
'SQL Injeotion Bra o TP AR a lr' ectionth o : PRS0
KJ vigl SOOI X AN Saw ras\OI' %ion Probe Detected.
QL Injection Pro BCtad IaRUNry d QL2 ._,, 2% ection Probe Detecte
e Detected. %{ﬁ QTR SETisPr NN e ted hrobel °W°td04l:\|m°°“°" Probe&teoted 2 ot o ctio.n otactad
obo Detecte SO A T g _-' SRS G L] obe ete ed LInjectioniPr tected.
AT Y - 4 A . o o % o -,'. . ~ 5 2 a % L

()
ﬁ SQL Injection Probe Detected.

ted.
njection F&’m :
njection Pr.
.’ “ . SOLG
: ‘lt'":.‘ ’;_4 }m' q

¥

y v!,A“ | {
(o A ‘ |
¢ L-Injectlo Ptr'
4 ‘: [

SQLlnjectlon Probe Detected SQ) Af[ﬁjbc'hr{fbrobe Detected.
19 -
SQL Injection Probe Detected !

I\ ¥

SQLaneotlon Probe Det‘eoted SLlnjeotlon ;;be Detected. A
' ' ImageC 2010 iTor raMetrlcs

: Imago USDA Farm Sorwco Agency
atasSI0 'r,.‘,, S. Navy, NGA, GEBCO,

ISO/IEC JTC 1/SC 27/WG 3, NWP
Refining Software Vulnerability Analysis Under ISO/IEC 15049

and ISO/IEC 18045
q%*-a.u, j (T 's,;:':’,;_ Y

- The way how the CAPEC and related CWE taxonomiesjare to be used by
the developer, which needs to consider and provide sufficient and effective

mitigation to all applicable attacks and weaknesses.

}

\J
7

- The way how the CAPEC and related CWE taxonomies are to be used by
the evaluator, which needs to consider all the applicable attack patterns and
be able to exploit all the related software weaknesses while performing the
subsequent AVA_VAN activities.

- How incomplete entries from the CAPEC are to be addressed during an
evaluation.

- How to incorporate to the evaluation attacks and weaknesses not included
in the CAPEC.

©2012 MITRE

What Are the System Security Risks?

Known
Threat
Actors

%._

Attack
Patterns
(CAPECSs)

-9

X

— | Attack j>—'--°

Weaknesses Controls* Technical Operational
(CWEs) System & Impacts Impacts
System Security
B e
* 14 ltem 1= —e Impact
i
i
i
- --¢
l
I

14 Item ¢~

—

Weakness o0 [tem ¢

* Controls include architecture choices, design choices, added security

functions, activities & processes, physical decomposition choices, code
assessments, design reviews, dynamic testing, and pen testing

©2012 MITRE

@ME Common Weakness Enumeration T --C SS
‘ommunity-Developed Dictionary of Software Weakness Types 7
New "5 | CU/RAF]

1) o
\"."} N- a m p v | Engineering for Attacks ey v
Development View Engineering for Attacks
Research View Attacker Weaknesses Identified By Attack Patterns Creating Your Program U.S Federal Reporting Software Quality
Reports Requirements & Responsibilities Prioritizing Weaknesses
I n th e Manageable Steps
Sources The greatest impact in software assurance activities come from thinking about how an attacker will Pocket Guides
Process try to gain access, control, or influence over your system once it is operational. For all too long, the Staying Informed

Documents thinking about this has been relegated to the “Security Experts” but they aren’t the ones that can
it actually do anything about it in a timely and efficient manner—you are—those that design,
architect, and develop the software.

Finding More Information

Discussion List
CWE Newsletter

CWE Community

SwA On-Ramp
- O Considering the Attacker e oblise
S e Ctl O n Of th e m By considering the attacker and using the collection of attack patterns available in the Common
e Attack Pattern Enumeration and Classification (CAPEC™) initiative, we can help identify
L CWRAF opportunities for increasing the robustness and defendability of our software. CAPEC is a list of the
We b s Ite cwe/sansTop2s | patterns of the attacks that can be used to exploit the weaknesses in systems. CAPEC entries list
the CWE entries that they can be effective against and CWE entries likewise list the CAPEC entries
z““”ir_"’““c“l‘? that they are susceptible to.
Representation
Engineering for Attacks t
Known Attack Patterns Weaknesses Controls* Technical Operational
A o el R Threat (CAPECs) {CWEs) | re—y—— Impacts Impacts
U.S Federal Reporting Requirements & Respon Actors &

The U.S. Federal Government, under ty€Federal Information Security Management Act (FISMA),
must now report some specifics about (Meiggoftware assurance actwrtles The FY2012 CIO FISMA

Reporting Metrics issued by DHS's Federal Network
utilize CWE, CAPEC and CWSS to discuss what was done to search for weaknesses in non-COTS
before release. The document also asks for a description of the methods used to assess for these
issues, offering several possibilities. Specifically:

] Wezkness #=v9 It
+ Web scanners for web- based applications e | T

¢ Static Code Analysis Tools : &5 i s ooy SEEEE——G o e
p . Eontfols ludi arch| e design ch :dded A y ¢ . & pi :
¢ Manual code reviews (especially for weaknesses not covered by the automated tools) physical decomp hoices, code design , dynamic testing, and pen testing
’ Dynamlc. Code Analysss Tools and as shown in the figure above, you want to conduct a software assurance
¢ PEN testing for attack types not covered by the automated tools o identify the applicable attack patterns from CAPEC that the "system" could be

and the weaknesses in CWE that those attack patterns are effective against and

provide the results and a documented set of recommended approaches to eliminating and
mitigating the CWEs through archltecture and design chmces |nclu5|on of securlty controls and

I ntrOd u ces Do D ,s features as well as 2
Program Protection
Plan (PPP) https:llcwe.mitre.orglcommunitylswa/attackgehtml

Measuring Assurance...

e An adversary's methods of attack and the system’s
susceptibility to the attacks that endanger the mission
are those to focus mitigations/security capabilities
against.

e Clear articulation of the threat actors attacks, the
weaknesses they can exploit, the mission impacts,
and their mitigations through all of the SSE and SE
methods, needs to be iteratively worked as a

community from the point of system concept through
sustainment

CAPEC - CWE - CWRAF/CWSS

©2012 4RE

CwE CAPEC

Contact Info

cwe@mitre.org
capec@mitre.org
cwss@mitre.org

S msm@mitre.org

Making Q
Security \\\

Measurable® & WRAF
N
Q
R\

CU/SS

MITRE

