
Choosing the Right
Software Assurance Tools

Paul E. Black
paul.black@nist.gov

http://samate.nist.gov/

Outline

l  Types of Software Assurance (SA) Tools
l  Considerations and Variants
l  Adding SA Tools to Your Process
l  Using the CWE-121 Effectiveness Set
l  More Resources from the SAMATE

Reference Dataset (SRD)

What Goes Into Assurance?

3

Assurance in IT Systems

Mature
Process

Study, Review,
and Test the
Software

Resilient
Execution
Environment

A = f(p, s, e)

Two Kinds of Analysis:
Static and Dynamic
Static Analysis
l  Code review
l  Binary, byte, or source

code scanners
l  Model checkers & property

proofs
l  Assurance case

Dynamic Analysis
l  Execute code
l  Simulate design
l  Fuzzing, coverage, MC/DC,

use cases
l  Penetration testing
l  Field tests

Static and Dynamic Analysis
Complement Each Other
Static Analysis
l  Handles unfinished

code
l  Higher level artifacts
l  Can find backdoors,

e.g., full access for user
name “JoshuaCaleb”

l  Potentially complete

Dynamic Analysis
l  Code not needed, e.g.,

embedded systems
l  Has few(er)

assumptions
l  Covers end-to-end or

system tests
l  Assess as-installed

Different Static Analyzers Exist
For Different Purposes
l  To check intellectual property violation
l  For developers to decide what needs to be

fixed (and learn better practices)
l  For auditors or reviewer to decide if it is

good enough for use

Outline

l  Types of Software Assurance (SA) Tools
l  Considerations and Variants
l  Adding SA Tools to Your Process
l  Using the CWE-121 Effectiveness Set
l  More Resources from the SAMATE

Reference Dataset (SRD)

Consideration: Rates

l  False alarm rate
l  Miss rate (recall)
l  Precision
l  Discrimination

Tools don’t report the same flaws

Consideration: Subject

l  What level?
–  Design, Requirements, Source code, Byte

code, or Binary
l  Language(s) handled
l  Compiler extensions
l  Platform
l  Speed, scalability, max program size

Consideration: Properties

l  Analysis can look for anything from
general or universal properties:
–  don’t crash
–  don’t overflow buffers

l  to application-specific properties:
–  log the date and source of every message
–  cleartext transmission
–  user cannot execute administrator functions

l  Can I write my own “rules”?

Consideration: Level of Rigor

l  Syntactic
–  flag every use of strcpy()

l  Heuristic
–  every open() has a close(), every lock() has an

unlock()
l  Analytic

–  data flow, control flow, constraint propagation
l  Fully formal

–  theorem proving

Consideration: Human Involvement

l  analyst aides and tools
–  call graphs
–  property prover

l  human-aided analysis
–  annotations

l  completely automatic
–  scanners

Consideration: Output Format (1)

 char sys[512] = "/usr/bin/cat ";
25 gets(buff);
 strcat(sys, buff);

30 system(sys);

foo.c:30:Critical:Unvalidated string 'sys' is received from an
external function through a call to 'gets' at line 25. This can
be run as command line through call to 'system' at line 30. User
input can be used to cause arbitrary command execution on the
host system. Check strings for length and content when used for
command execution.

Consideration: Output Format (2)

Consideration: Output Format (3)

l  Standard findings interchange format, e.g.,
SAFES or TOIF

Consideration: Tool Integration

l  Eclipse, Visual Studio, etc.
l  Penetration testing
l  Execution monitoring
l  Bug tracking

Consideration: Non-Functional

l  Cost
–  per seat, or per line of code

l  View issues by
–  Category
–  File or Package
–  Priority

l  New issues since last scan
l  Are issues increasing or decreasing?
l  Which modules are hot spots?

l  The report explains
–  use of the Juliet test suite
–  the 14 weakness classes

covered
–  automated run and scoring
–  measures: precision,

recall, discrimination, etc.
–  graphs and tables to

understand result

l  It does not evaluate
specific tools.

//samate.nist.gov/docs/CAS 2011 Static Analysis Tool Study Methodology.pdf

Outline

l  Types of Software Assurance (SA) Tools
l  Considerations and Variants
l  Adding SA Tools to Your Process
l  Using the CWE-121 Effectiveness Set
l  More Resources from the SAMATE

Reference Dataset (SRD)

Set up “consulting” group

l  They have time to learn the tool, customize
it for a project’s need, run it, and interpret
results.

l  Gradually withdraw support,
e.g. longer turn around,
less face-to-face effort –
natural as consultants
help other projects.

Start with one class of flaw

l  Choose the class that is most critical or is
easiest to catch.

l  Add other flaw classes as value is
demonstrated.

Only Look at New Code

l  Ignore warnings from existing code
–  it already runs, doesn’t it?

l  Require that any brand new code needs to
be “clean” – either code changed to avoid
warnings or explicit justification.

l  Then include code that is modified.

Increasingly Require Over Time

l  At first, the only requirement is that every
developer had a static analyzer.

l  Then required that it be run.
l  Then standardize on one or two that

developers found beneficial.
l  Then require that warnings be reported.
l  Then require that warnings be addressed

(fixed or dismissed).

Survivor effect in software

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

after Bill Pugh
SATE workshop
Nov 2009

Late automated analysis is hard

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

Automated Static Analysis after Bill Pugh
SATE workshop
Nov 2009

Automated analysis best at start

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

Automated Static Analysis

after Bill Pugh
SATE workshop
Nov 2009

When is survivor effect weak?

l  If testing or deployment isn’t good at
detecting problems
–  True for many security and concurrency

problems
l  If faults don’t generate clear failures

–  Also true for many security problems

after Bill Pugh
SATE workshop
Nov 2009

Outline

l  Types of Software Assurance (SA) Tools
l  Considerations and Variants
l  Adding SA Tools to Your Process
l  Using the CWE-121 Effectiveness Set
l  More Resources from the SAMATE

Reference Dataset (SRD)

MITRE’s CWE Compatibility and
Effectiveness Program
l  Phase 1 – Declare compatibility
l  Phase 2 – Verify mapping to CWEs
l  Phase 3 – Test cases show effectiveness

–  tool effectively locates CWEs
–  tool deals with code complexities

 http://cwe.mitre.org/compatible/program.html

30

What is “Code Complexity”?
 char data;!
!
 data = ’C’;!
!
!
!
!
!
 data = ’Z’;!
 printHexCharLine(data);!

31

 char data;!
 if (1) {!
 data = ’C’;!
 } else {!
 data = ’C’;!
 printHexCharLine(data);!
 }!
 if (1) {!
 data = ’Z’;!
 printHexCharLine(data);!
 } else {!
 printHexCharLine(data);!
 }!

CWE-563 Unused Variable, after SRD test cases 35455 and 35456

What is content like?

l  Each CWE has one or more tests
–  short (this is not about handling megacode)
–  code is vulnerable, i.e., exploitable
–  (usually) synthetic
–  fairly “clean”, but not necessarily pristine;

meet SRD “accepted” standard
–  standard code; no language extensions

l  Test cases have corresponding “fixed”
cases, to prodive data on false positives

32

As a Proof-of-Concept

l  We started with CWE-121 Stack-based
Buffer Overflow (in C language)
–  CWE-121 is a frequent, serious problem.
–  It is well-defined and easily understood.
–  We have thousands of examples.
–  It is addressed by static analysis, compile-time

techniques, or run-time detection.

Background Work

l  Over the summer NIST researchers
installed five static analyzers, then
examined 7,338 in 9,962 files from
–  Juliet (split into 5,892 good & bad cases)
–  Kratkiewicz (1,139 cases)
–  KDMA TCG (249 cases)
–  2005 Fortify (41 cases)
–  other SRD (17 cases)

Proposed CWE-121 Basic Set

l  It consists of five cases.
l  The most basic case is basic-00001-min.c

char buf[10];!
buf[10] = 'A';!

–  This is so trivial it never occurs in real code.
l  We added four more cases as simple

variants.

Other Basic Cases

l  basic-00034-min.c
–  access through a pointer

l  basic-00045-min.c
–  use strcpy()

l  basic-00182-min.c
–  fgets(): limited copy and external input

l  stack_overflow_loop.c
–  loop initializes array, but bad bounds check

Next Step – Complexity Cases

l  Cases related to SATE or Lippman
l  Other fns: str(n)cpy/cat, memcpy/move, s(n)printf
l  Separate files (caseA.c & caseB.c)
l  Duplicate function names
l  Dynamic allocation - alloca()
l  Array indexing - see Kratkiewicz
l  Data Types
l  Buffer in struct
l  Dead (infeasible) code
l  Open coded or obfuscated str(n)cpy()
l  Cases with a difference between I/J/M or min/med

37

What about tool “short cuts”?

l  Tool makers may build to a public, static set.
–  A secret or dynamic set has other problems.

l  Change comments and identifier names for
every download?

l  Add innocuous statements?
l  Transform code, like unroll loops?

Proposal:
l  If concerns arise, privately corroborate results.

38

Outline

l  Types of Software Assurance (SA) Tools
l  Considerations and Variants
l  Adding SA Tools to Your Process
l  Using the CWE-121 Effectiveness Set
l  More Resources from the SAMATE

Reference Dataset (SRD)

SAMATE Reference Dataset
l  Public repository for

software assurance test
cases

l  Over 60,000 cases in C,
C++, Java, C#, and Python

l  Search and select by
language, weakness, etc.

l  Contributions from CAS,
Fortify, Defence R&D
Canada, Klocwork, MIT
Lincoln Laboratory, Praxis,
Secure Software, etc.

Juliet 1.1 cases

l  23,957 cases in Java and 57,099 in C/C++
covering 181 weaknesses

l  Each case is a page or two of code,
sometimes crossing multiple files

l  Most cases include similar unflawed code
l  Organized by weakness, then variant, then

complexity
l  Described in IEEE Computer, Oct 2012

http://samate.nist.gov/SRD/testsuite.php

STONESOUP cases

l  About 460 cases in Java and C, each a
program typically 200-300 lines long

l  Cover weaknesses in Number Handling
(e.g. integer overflow), Tainted Data (e.g.
input validation, Injection (e.g. command
injection, Buffer Overflow, and Null Pointer

l  Each case has inputs triggering the
vulnerability, as well as “safe” inputs

l  Available about November 2012

Kratkiewicz MIT cases

l  1164 cases in C for CWE-121 Stack-Based
Buffer Overflow

l  Created to investigate static analysis and
dynamic detection methods

l  Each case is one of four variants:
–  access within bounds (ok)
–  access just outside bound (min)
–  somewhat outside bound (med)
–  far outside bound (large)

l  Code complexities: index, type, control, …

Other SRD Content

l  Zitser, Lippmann, & Leek MIT cases
–  28 slices from BIND, Sendmail, WU-FTP, etc.

l  Fortify benchmark 112 C and Java cases
l  Klocwork benchmark 40 C cases
l  25 cases from Defence R&D Canada
l  Robert Seacord, “Secure Coding in C and

C++” 69 cases
l  Comprehensive, Lightweight Application

Security Process (CLASP) 25 cases
l  329 cases from our static analyzer suite

