KD M,

Analytics Working Together to Build Confidence

DoD Software Fault Patterns

Dr. Nikolai Mansourov
CTO

Software Fault Pattern (SFP) Research Program

. Develop a specification of software weaknesses/vulnerabilities

that enables automation

= Focus on computation as the viewpoint that can support automation

= Computation is determined by system’s artifacts
Code, data schemas, platform configuration, build scripts, etc.
Common, agreed upon vocabulary is defined in ISO 19506 (KDM)
Computation causes observable events

= This is formalized as the Logical Weakness Model:
a necessary condition for a weakness
“condition” to confirm the weakness

= Enables mathematical reasoning about vulnerability findings

= Ensure systematic coverage of the “weakness space”:
= identified major areas of computations which are associated with security
flaws,
= identified common patterns of faulty computations

= Aligned then with impact (focusing on injury, i.e. impact with a shortest
causal link)

)

Current approach: CWE catalog

“Make sure that the deployed software does
not have things that are of a concern to us”

CONDPS
— ﬁ ;
% 8 CWE i risk%analysis
S catalog report
analyst e
__/ i
v

9/14/11 © KDM Analytics Inc. 3

Current automation

Code

Vulnerability detection tools

- ' Vulnerability CONDPS
A . ; Co
c I > L
O EEET TN
= I |
> | !
G !
() | !
i) I !
= | !
[oa I i
I - “
— : CWE o > : riskfanalysis
I catalog ireport
v |
v

Current approach has several gaps

9/14/11 © KDM Analytics Inc. 4

Better automation needs a specification

Code

Vulnerability detection tools

What are implemented

H
H 3
Ny i >

L]

'VuInerébiIity
findings report

Why does the absence of
findings mean that the risks
are mitigated ?

Ass
eva

Juation

vulnerabilities and how they are

analyst

urance Case

risE< analysis
report

\ 4

=
—>
T Tool
= A
c
o
=
>
c
)
9
S
m
—>
........... Y
Wheregwe looked
-------------- \(.

\ 4

What are the risks and
the corresponding

&
<

W;Qat to leok for
(SFP)

9/14/11

\ 4

Did we cover all vulnerabilities ?

© KDM Analytics Inc.

vulnerabilities ?

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

SFP approach: extending CWEs into a specification

9/14/11 © KDM Analytics Inc. 6

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

What is a pattern (that is not nebulous) ?

Fact-oriented approach to pattern definition and discovery

Pattern is a collection of things and relationships between these things
(facts)

Based on a well-defined vocabulary for “things” (nouns) and relationships
(verbs)

Same vocabulary is used to describe real situations (e.g. systems), resulting
is a factbase — discovery, phase |

I”

— “real” things
— “real” relationships
This vocabulary is used to define patterns
— Things that are “variables”
Patterns are matched to the factbase (this is discovery, phase Il)

Vocabulary is the conceptual commitment

The key to defining a pattern is a vocabulary

9/14/11 © KDM Analytics Inc. 8

SFPs are parameterized families of computations

Y

Parameterization is about creating a
A vocabulary of elementary “shapes”
and characteristics of these shapes,
focusing at the invariants and the
\) variation points of each “shape”

a straight line also a straight line parabola periodic line

A A
\\
a composite line also a composite line another composite line

CWE is predominantly a collection of observations, not a vocabulary of common “shapes”

9/14/11 © KDM Analytics Inc. 9

How to Identify Parameters

and Why is that Important

1. Observations that
are

representatives of a
common family of
computations (aka
cluster)

2. Generalized definition

cluster

s

5. Variations are identified
top-down in order to provide
assurance of coverage

; \ . variations

parameters

4. Parameterization
introduces additional
details for the
generalized definition,
focusing at the
variation points

9/14/11

© KDM Analytics Inc.

3. generalized definition
refers to the entire

cluster (its invariant and
its variation points)

6. Parameters are

mapped to the original
observations, and gaps
are identified

10

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

Injury in the system context (aligned with CVSS)

[Service

N
Adjacent network

s
Z

[Data in use]

Exception mgmt Information output

I\\

@ntime platform °

Network

Local

Channel

Y d—
L)

n

9/14/11 © KDM Analytics Inc. 12

Vulnerability and Injury

~

[T Injury: an elementary undesired e_v_élnw:c-: ___ -
that can cause further impactlto' h N
V, ,', 4 l //\ /,’ '/,/
. Confidentiality of Integrity of/ O > Availability of
Information Service Informatio Service® Sgrvice [nformation Resource
Data at rest Data at rest Distortion ~. Dataatrest
\\\ J' “\ |‘\ 4'
. Datain motion ' Data in motion
) Data in use . D in
S . ata use Lock

Causal relaton ~ Tte.l

9/14/11 © KDM Analytics Inc. 13

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable

family of computations
® Patterns with an invariant core and variant parts
* Aligned with injury
* Aligned with operational views and risk through events
* Fully identifiable in code (discernable)
* Aligned with CWE
* With formally defined characteristics

Alignment with operational views and risks

Code

Vulnerability detection tools

What are implemented

i
>y

-
-
)
S
c
(@)
=
S
c
o
e
=
@
N
........... Y,
. Where [ve looked

éVuInerébiIity
findings report

Why does the absence of
findings mean that the risks
are mitigated ?

3
>

Ass

eva;

vulnerabilities and how they are
mitigated by safeguards?

CONDPS

analyst

urance Case

luation o _
risk analysis

report

\ 4

Wihat to I‘.,(E)ok for
(SFP)

9/14/11

© KDM Analytics Inc.

Did we cover all vulnerabilities ?

15

Events, computation and code

’V Data plane e IUURPRTEEIE S @ """""""" ‘@"‘—’

Service Initialization Authentication @ Exception mgmt i
! ! Cryptography
1

1
Accesg control

Input proces.d,ling
1 1

Control plane v

Info:rmation output

Resource

phase /
state i = ion fai " time
Computationis ‘ | / Computation often
an sequence of | /7 performs steps that
steps/events / are common to
large families of
ﬂ ow systems

pipes -
“Code” provides
constraints to
computations and
therefore determines
what kind of computations

can occur
/ﬂ

9/14/11 © KDM Analytics Inc. 16

/ |Certain “places” of “code” are
indicators of particular

—_ computations

Certain “places” of “code” are
necessary conditions for
vulnerabilities

Weakness Logical Model

Value Rules

L

[Weaknﬂ_]

[Structural Rules]

i
—>
.. 0..* : End Statement
Condition |« Computation .
Data Flow >
A ?
0..* 0..* 0..
satisfies involves) Start Statement
1..” L..x satisfies
has
Value Range |«— Property [Control Flow
Code Path
A has V

T resolves to

Data Relation

deteérmines

}o

determines

from

A

4

Control Relation

l to from

tData Element
| .

Resource

uses

Statement

«—

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

How does the new approach enables automation?

Common, agreed upon vocabulary for systems elements:

Pipework element

Pipe

Valve

Pump

Gauge

Meter

T-connector

Pipe is connected to pipework element

Normalized mathematical description of the system:
Valvel is connected to pipe2;

pipe2 is connected to meter3;
Pump4 is connected to pipe5 and pipe6; etc.

Software Fault Pattern description is based on the system vocabulary
this makes all properties discernable
this enables information interexchange between tools

allows mathematical reasoning about findings
allows mathematical reasoning about assurance

9/14/11 © KDM Analytics Inc. 19

Not all characteristics are discernable

Discernable characteristic
is a property of the computation,
such as the role of a data element, the Is based on

role of an action or of a region, which >

can be expressed as a statement in

the vocabulary of the “code”
A non-discernable description is A non-discernable description can be turned
either ambiguous, uses ill-defined into a discernable one by:
characteristics, or uses one or more . Additional research to better scope
non-discernable characteristics . More clarity and precision

. Additional facts

* Examples of non-discernable CWEs
— 684 - Failure to Provide Specified Functionality

The code does not function according to its published specifications, potentially leading to incorrect usage
— 573 - Failure to Follow Specification
The software fails to follow the specifications for the implementation language, environment, framework, protocol, or platform

— 115 — Misinterpreted Input

The software misinterprets an input, whether from an attacker or another product, in a security-relevant fashion.

— 448 - Obsolete Feature in Ul

A Ul function is obsolete and the product does not warn the user.

9/14/11 © KDM Analytics Inc. 20

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

Methodology Behind Forming SFPs

Clusters and SFPs
define manageable
vulnerability families

3. Generalized
features

based on the use of

4. Clusters

SFP focuses on
discernable features

describe

group o
Invariant

5. SFP

common noun identify Parameterization is
concepts and injury analyze proximityll variation Jfo‘;fsg /f;amt;%rn d full
oints
%:featuhrelscI P
ootholds & 6. P
. ; . Parameters
conditions Identify

of computations)

Initial analysis of features was

informal because a large number of
non-discernable CWEs was anticipated

extract

gaps
Parameterization is
only done for

1 discernable CWEs

CWEs
used as observation samples

How do we get there ? Methodology overview

e Bottom up process - Start with CWEs — as de-facto weakness
space definition

We used CWE to identify common areas of computations

e Top down process - CWEs are no longer involved

Clusters, their characteristics — look at the nature of all computations
in a certain area (good and bad); what are the common
characteristics of these computations? Then use this a controlled
vocabulary for defining weaknesses in this particular area

Focus at common detection (when can we distinguish a bad
computation from a good computation in a given area; and how we
automate this decision?)

* Unique foot-holds of the computation

 Agreed ontology between fact collection and vulnerability definition

Alignment with injury (defined in CVSS)

CWE enumerates various faulty computations

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weaknoess Tyvpes

CWE List
Full Dkclonany Wit
Develonmeant Wity
Reseancn Wity
Repoms !
Abaut Status: Incomplete
Souces

Process
Documeans
Cammun ity
Ralaoed Scchicies
DEcusson Lk
Reseancn
CWESSAMNS Ton 25
cwss an it can hold, or when
News . he simplest type of
Calendar i bgram copies the buffer

Fras Nestns bacnes w strongly suggests
Campatiblity
Peogeam
Requivemens
Dac laracions
Have 5 Dac lacacion
Cantact Us
SeancncnesSkes

e input buffer is less

use "buffer overflow."

ic" overflow, including
ess errors, integer
ine which variant is

9/14/11 © KDM Analytics Inc. 24

What families of computations are covered by CWE ?

9/14/11 © KDM Analytics Inc. 25

Identify common characteristics and group “close” CWEs

9/14/11 © KDM Analytics Inc. 26

Identify common characteristics and group “close” CWEs

9/14/11 actqr ~ ©RbBM-Analytics Inc.

As the result, several clusters emerged

<~ exception management

=
=

risky practices <

information leak

=

9/14/11

21 clusters and their associations

\

A® Authen tication Other
rea Area
Shares characteristics with
Cryptography
Contro) Predictability
d - Information
esolution
leak

U
esource
anagemﬂt)

/

A
functionality

input output
«—

'infrastructure

Full Conceptual Map of the primary clusters

9/14/11 © KDM Analytics Inc. 30

What is a Software Fault Pattern (SFP)?

®* SFP is a generalized description of an identifiable
family of computations

Described as patterns with an invariant core and variant parts
Aligned with injury

Aligned with operational views and risk through events

Fully identifiable in code (discernable)

Aligned with CWE

With formally defined characteristics

Machine-readable vulnerability patterns

Vulnerability

Injury (event)

“Faulty” computations
are either related

Vulnerability: a bug, flaw,
weakness, or exposure
of an application, system,
Safeguard device, or service
Failure (event) thatcould lead to a failure
‘ of confidentiality,
integrity, or availability

to injury or
to safeguards failure
v events v Vulnerability involves an event
[patterns pa/tterns]

\

footholds ~

ISO 19506

9/14/11

conditions over system elements

/

l

footholds

Standard protocol for
exchanging system facts

© KDM Analytics Inc. 32

Discernable weakness description has “foot-holds”

“Foot-hold” — a tangible “place” of the computation that is a necessary for
the computation to result in injury

Classification of the “foot-holds”
— APl calls

Entry points
Programming language constructs

Main “foot-holds”

Input port (exploitable vulnerability)

Output port (confidentiality impact)

Places where resources are modified (integrity impact)

Places where code can be modified (integrity impact)
Conditions (key to determine data constraints and properties)
Certain programmatic constructs (availability impact)

Examination of “Authentication” cluster

MChannelS : Local
involves LhGS Adjacent

— Authenticated endpoint __tes Network
- /‘ |dentity

involves

Authenticated actor > Access rights

has
\iart of / Is part of
involves has has . .
’ny' Configuration
\ has

manages
Management of actors

, involvi
involves oives

manages

Management o

tokens 4 Authentication token |dentificator
“ S A:sed on \ Is supported by Product
; API to check token
ot . e
quards V Risk of confidentiality impact

: : : has
Region with authenticated actor— ™

performs \

Risk of integrity impact

Information access
Resource access

Examination of the “Access Control” cluster

involves

__—— Authenticated actor Product

Isa h
as
has Is part of

Access rights > Configuration

involves

involves

manages

Owner

Is owned by

Management of
access rights

Is owned by

Is bdsed on

Management of ownership Infortnation item

e

Is|supported by

Information access
pefM > Resource
. . _____— Resource access
Region with access control = performs

has

Is part of

Risk of confidentiality impact
Risk of integrity Impact Region with authenticated actor

Examination of the “Privilege” cluster

) API
S\:cstem operation 7 . vorted by
.. Information access :
Privilege Resource access h/Authentlcated actor
as

has

Privilege level
Is part of

v

Access rights

Isa

Is supported b
upp requires

involves

Privileged operation

involves

,.. Eleyated privilege level

involves

performs
Cha
API tg manage privilege \g“""”s

involves involxes

Risk of escalated privilege

Leads to

Region with elevated

starts

Operation to raise privilege level

ends In the context of

Operation to drop privilege level Process

SFP EXAMPLES

9/14/11

© KDM Analytics Inc.

37

Extracting and Generalizing SFP Features

CWE 194 Unexpected sign extension

The software performs an operation on a number that
causes it to be sign extended when it is transformed into a
larger data type. When the original number is negative, this
can produce unexpected values that lead to resultant

weaknesses.
Features are ® computation involves data element DE1 of data type T1 primitive noun concepts
normalized and use * data type T1 is signed
randard vocabul * computation involves cast of DE1 to data type T2 . *ActionElement AE1 (cast)

f)fa:o:rr; a;(c)!c\c/]erlljy ary ® data type T2 is signed ~ *data element DE1
concents ®*T2islargerthanT1 ® data type T1

P ® value of DE1 is negative ® data type T2

foothold injury condition

® data type T1 is signed

® data type T2 is signed
®*T2islargerthan T1

* value of DE1 is negative

cast of DE1 to data type T Loss of data in use

this is an issue because under certain circumstances the cast operation
violates a naive assumption that the value remains unchanged;

this is a minor injury in itself, but it can be combined with other issues
when the changed value flows into another region, e.qg. when
intersected with user access & unauthorized user or with resource
control, authentication, buffer access or resource access

9/14/11 © KDM Analytics Inc. 38

Focusing on Invariants

CWE 194

CWE 195

CWE 196

CWE 197

CWE 681

CWE 704
9/14/11

® computation involves data element DE1 of data type T1
® data type T1 is signed

® computation involves cast of DE1 to data type T2

® data type T2 is signed

®* T2is larger than T1

* value of DE1 is negative

* computation involves data element DE1 of data type T1
® data type T1 is signed

® computation involves cast of DE1 to data type T2

® data type T2 is unsigned

® DE2 is used as a size variable

invariant
characteristics

common

* computation involves data element DE1 of data type T1 foothold

* data type T1 is unsigned
® computation involves cast of DE1 to data type T2 _— cast of DE1 of data type T1 to datatype T2
® data type T2 is signed

* value of DE1 is large enough to be interpreted as sign common

(generalized)

® computation involves data element DE1 of data type T1 condition

® data type T1 is numeric

® computation involves cast of DE1 to data type T2

* data type T2 is signed

® T2 is smaller than T1

* value of DE1 is large enough to loose significant bits

T1, T2 and the value of DEI
result in change of value of DE1

common
* computation involves data element DE1 of data type T1 injury

* data type T1 is numeric

® computation involves cast of DE1 to data type T2
® cast changes value

® resulting value is used in sensitive context

loss of data in use

* computation involves data element DE1 of data type T1
® computation involves cast of DE1 to data type T2 /1

® cast changes value © KDM Analytics Inc. 39

Example of formalized content

Unsafe Type Conversion

A weakness where the code path has:
- an end statement that performs cast of data value of datatypel to datatype2

where cast operation modifies the data value

9/14/11 © KDM Analytics Inc. 40

Bottom Up Identification of Variation Points

® computation involves data element DE1 of data type T1
® data type T1 is signed

® computation involves cast of DE1 to data type T2

® data type T2 is signed

® T2 is larger than T1

* value of DE1 is negative

* computation involves data element DE1 of data type T1
® data type T1 is signed

® computation involves cast of DE1 to data type T2

® data type T2 is unsigned

® DE2 is used as a size variable

® computation involves data element DE1 of data type T1
® data type T1 is unsigned

® computation involves cast of DE1 to data type T2

® data type T2 is signed

* value of DE1 is large enough to be interpreted as sign

® computation involves data element DE1 of data type T1
¢ data type T1 is numeric

® computation involves cast of DE1 to data type T2

® data type T2 is signed

® T2 is smaller than T1

* value of DE1 is large enough to loose significant bits

® computation involves data element DE1 of data type T1
® data type T1 is numeric

® computation involves cast of DE1 to data type T2

® cast changes value

® resulting value is used in sensitive context

* computation involves data element DE1 of data type T1
® computation involves cast of DE1 to data type T2
® cast changes value

9/14/11

extracted
parameters

® data type T1 is signed

e
® data type T1 is unsigned

® data type T2 is signed
® data type T2 is unsigned

——> °*datatype Tlis larger than data type T2
¢ data type T is smaller than data type T2

—> ¢ value of DE is negative

® value of DE is large enough to loose
significant digits inin T

® value of DE is used in sensitive context

This is a bottom-up approach that does not assure coverage

© KDM Analytics Inc.

41

.

Top Down Identification of Variation Points

Unsafe Type Conversion

ek common generalized condition CWE 194
foothold 8 CWE 195
CWE 196
cast of DE1 of data type T1 to datatype T2 T1,T2, and value of DEI results in change to value of DEI CWE 197
common injury because under certain circumstances the CWE 681
loss of data in use, cast operation violates a naive assumption CWE 704

Loss of availability of service that the value remains unchanged;

. L . .
variations: value changes sign

datatype T1
(source)

® data type T1 is signed
® data type T1 is unsigned

® value is truncated This is a top-down approach that does assure coverage
® value is enlarged

Extracted Parameters

datatype T2 relation between T1 and data element DE1
(target) T2 (input)
® data type T2 is signed ® data type T1 is larger than data type T2 * value of DE1 is negative

® data type T2 is unsigned ® data type T1 is smaller than data type T2 ® value of DE1 is large enough to be

interpreted as sign in T2
® value of DE1 is large enough to loose
significant digits in in T2

)

Parameterization example

Unsafe Type Conversion

A weakness where the code path has:

- an end statement that performs cast of data value of datatypel to datatype2
where cast operation modifies the data value

— .
SFP Parameters Variation on injury Source Data Type Target Data Type Source Data Value Tg;%igg;:';i:
value
sample values alue changes trun- | value larger than max
sign cates enlarges signed = unsigned signed unsigned | positive negative datatype2 sensitive smaler larger
CWE

194 - Unexpected Sign Extension v N N Y N
195 - Signed to Unsigned Conversion
Error y R \ V y y
196 - Unsigned to Signed Conversion
Error \ \ R \/ R y
197 - Numeric Truncation Error y y y
681 - Incorrect Conversion between
Numeric Types y \/ y
704 - Incorrect Type Conversion or Cast N N N

Now we can use variations and parameters to identify gaps in existing CWEs

9/14/11 © KDM Analytics Inc. 43

Further generalization (description of a larger family of computations)

Unsafe Type Conversion

:g;::::; common generalized condition CWE 194
CWE 195
cast of DE1 of data type T1 to datatype T2 T1,T2, and value of DEI results in change to value of DEI CWE 196
CWE 197
common injury because under certain circumstances the CWE 681
loss of data in use, cast operation violates a naive assumption CWE 704
Loss of availability of service that the value remains unchanged;

Other computations that violate naive assumptions about the resulting value
(SFPs are numbered as per Phase | result)

SFP Wrap around error SEP Suspic dit SFP Incorrect operation of Non-
SFP Incorrect pointer scaling uspicious condition Serializable Object

SFP Use of uninitialized variable SFP Incorrect parameters to

SFP Divide by zero an AP SFP Faulty pointer use

SFP Faulty pointer creation

common parameters:
Family: “Identifiable glitch in computation” SFP-1 - °heraten (eyntacti

common common generalized - type of data (integer,

foothold condition boolean, etc..‘
- what condition of data

identifiable operation that leads to a glitch
under certain circumstances - type of glitch (how does
results in unexpected change of data the value change, e.g.
overflow, underflow, loss,
exception, etc.) ' ’

data is inappropriate for the operation

Overcoming Usual Difficulties in Categorization

Vulnerabilities that are compositions of several elementary “shapes”

glitch in computation glitch in computation

corrupted data Resource corrupted data
control

injected data injected data

Authentication

glitch in computation glitch in computation

Resource
Buffer corrupted data access
corrupted data access

o injected data
injected data

incorrect pointer scaling -> faulty pointer use

incorrect buffer length computation -> faulty buffer access

SFP-8 Faulty Buffer Access

SFP8

Faulty Buffer Access
A weakness where the code path has all of the following:

- an end statement that performs a Buffer Access Operation and where
exactly one of the following is true:

-- the access position of the Buffer Access Operation is outside of the
buffer or

-- the access position of the Buffer Access Operation is inside the buffer
and the size of the data being accessed is greater than the remaining
size of the buffer at the access position

Where Buffer Access Operation is a statement that performs access to a
data item of a certain size at access position. The access position of a
Buffer Access Operation is related to a certain buffer and can be either
inside the buffer or outside of the buffer.

SFP-8 Parameters and CWE mapping

Parameters

Buffer location

Access kind

Access position in relation to

the buffer

Access position defined by
(this parameter is not
necessary)

Values

heap

stack

data segment

write

read

inside the buffer

outside the
buffer

Array with index] pointer

CWE

118 - Improper Access of
Indexable Resource

119 - Fallure to Constrain
Operations within the
boundaries of a memory
buffer

121 - Stack Overflow

122: Heap Overflow

< | <

123: Write-what-where
Condition

124: Buffer Under-write

< | 2 |2 |=

125: Out-of-bounds read

126: Buffer Over-read

127: Buffer Under-read

< |2 <

129: Unchecked array
ndexing

120 - Buffer Copy without
IChecking Size of Input
'Classic Buffer Overflow')

9/14/11

© KDM Analytics Inc.

47

Improved Reporting Based on Injury

Buffer Access Access Position Access Position is
contained defined by
Heap Stack Data write read In the Outside Array pointer
segment buffer | the buffer with
index

Priority

) |/
T /

P3
ik i

9/14/11 © KDM Analytics Inc. 48

SFP: WHERE WE ARE AND WHAT NEXT

SFP statistics

e 21 primary clusters
— Cover 630 CWEs

* 62 secondary clusters
— Contain both discerable as well as non-discernable CWEs

e 36 software fault patterns
— Cover 310 discernable CWEs

— Each SFP has
* Foot-hold
* Conditions
* Parameters
e Sample values of parameters
* |njuries
* CWE mapping

SFPs : going forward

There are non-discernable CWEs
— lll-defined code weaknesses

— Design weaknesses

— Architecture weaknesses

— etc.

Full formalization of SFPs
More parameter values
Address gaps in CWEs

SFP DEFINES AN INTERFACE TO
AUTOMATED DETECTION TOOLS

SFP defines an interface to the detection tool

Code

Vulnerability detection tools

—f |

l Build environment

y

Whereg e looked

What are implemented
vulnerabilities and how they are
mitigated by safeguards?

~ CONDPs
Vulnerability

findin ;

Assurance Case

risk analysis

Why does the report

findings mean th
are mitigated ?

risks and

&
<

Wibat to leok for
(SFPY

9/14/11

Did we cover all vulner

© KDM Analytics Inc. 53

SFP AND CLAIMS TO ASSURANCE CASE

Mathematical reasoning about claims

Vulnerability detection tools

l Build environment

9/14/11

Wh

Ny i

Y.

Whereg e looked

Witlat to I’:c?)ok for
(SFPY

: Vulnerability
findings report

Why does the absence of
findings mean that the risks
are mitigated ?

Did we cover all vulnerabilities

© KDM Analytics Inc.

at are implemented

vulnerabilities and how they are
mitigated by safeguards?

Assurance Case
evaluation

? \E‘A/hat to'glook for

CONDPS

risE< analysis
report

55

SFP AND INTEGRATION OF EXISTING
TOOLS

DHS TOIF Architecture

Vulnerability detection tools

Proprietary tool for

Code

9/14/11

——>| CPPcheck |—
—>| FindBugs >
w 1
> | JLint — D OIF XN
2 =—
|, [rats |25
S %
+— 5| Splint 5 © =
C L =
= = £
C
=
> --------------------------
C
()
L)
S
N f——— —
KDM XMl
—> —>
KDM XMl

Defect visualization

TOIF

analyzer
unification,
Il correlation
confidence

Proprietary tool for
architecture
analysis

Arc:hitecture risk
analysis report

Standard _
protocol RS— 3

Integhated vulnerability

Fact Oriented Interface

Archifiectu re
risk factors

ST TR

Knowledge mining tools l l l I
57

© KDM Analytics Inc.

SUMMARY

9/14/11

© KDM Analytics Inc.

58

In Summary

* Existing classifications (Landwehr, CWE, etc.) lack some key
considerations

®* They do not restrict the features that are input to categories

They do not focus on the features that are identifiable in artifacts, like code

They do not consider normalization of feature descriptions

They are not aligned with injury

They do not consider common vocabulary for feature descriptions

®* Benefits of SFP approach
®* Manageable catalog with a small number of categories

®* Normalization allows comparison, generalization, etc.

Aligned with injury - easy to report and manage;

Static analysis contributes to traditional risk analysis and system/mission
assurance

Helps identify gaps

Benefits of Parameterized SFPs

SFPs extend the CWE catalog into a specification

SFPs allow mathematical reasoning about
vulnerabilities

SFPs make analysis systematic
SFPs facilitate management of findings

SFPs facilitate interface between stakeholders and
static analysis tool vendors

