Summary of LDRA’s
participation in SATE 2011

Introductions

* Clive Pygott
— Member ISO software vulnerabilities working group
— Member MISRA C++ committee

— Member of the working group drafting a proposed
secureC annex for the C language definition

e Jay Thomas
— Field Applications Engineer

e Liz Whiting (not present today)
— Member MISRA C committee

LDRA Technology, Inc LDRA

San Francisco, Dallas, Boston & Washington DC

Consultancy, support & training

LDRA Ltd - Worldwide Direct Offices

LDRA Ltd
Newbury UK

LDRA Technology Inc
Boston MA USA

LDRA Technology Inc
S.Riding VA USA

LDRA Technology Inc
San Francisco CA USA

LDRA Technology Inc
Atlanta GA USA

LDRA Technology Inc
Dallas TX USA

LDRA Ltd
Wirral UK

LDRA sarl
Paris France

LDRA Technology Pvt. LDRA Ltd
Ltd Bangalore, India Sydney Aus

Quality Model Application LDRA
DO-178B/C (Levels A, B & C) CENELEC 50128
DO-278 CERT C/CWE
MISRA-C:1998 High Integrity C++
MISRA-C:2004 JSF++ AV
MISRA C++:2008 HIS
MISRAAC AGC IPA/ SEC C
IEC 61508 / IEC 61508:2010 Netrino C
ISO 26262 NUREG 6501
IEC 62304 BS 7925

Def Stan 00-55 and related standards...
Testnr)

TESTED

LDRA in the Aerospace

Lockheed Martin F-35 Lighining il (J5F)

gt @ 5 B P
3 NoRTISOP Snsemin =
Litton

:"’ =} L F I N P
X Litton Systems

e SIS
1:, Pratt & Whitney Ultra _ﬁdenpo
ELECTRONICS
OFFICINE C'“'"E
QEFICINE Eerc @ r]
S Trimble |
Esterlinés

ywe
gKJddEAemspace

,.-1.-_-"'"'--"""'
[Rolls-Royce GoobrRicH ~ smiths

il THALES
=1 N T1,5c5 Avionice
- ﬂ Kldde Graviner < EMERAER Digal Automaric Fligh Centrol for Ecipss 500™ jMSystem Auto Pilot Softwnre for 5.130:2 twin engine jot supplied by
0 supplied by 5-TEC Horurpwell
@ LG Innotek Hounuscuwnnz

EOos @uGHS .__‘5_:’ KAl

@ AIRBUS INDUSTRIE

7 ATRANERS E‘"&-‘ Gl
Raytheon e

SPRINT Compary

LDRA in Power

BNFL @\Nestmghnuse @

Engineering Ltd

¥ UKAEA

% NUCLEAR POWER CORPORATION OF INDIA LIMITED .:. GENERAL ATOMICS
A Government of India Enterprise

C)KOPEC A ‘Power Tools’

CANBERRA

BEF“TEL

LDRA Testbed® - Qverview LDRA

LDRA Testbed analyses source code
e Looks for 979 individual properties
— referred to as “penalties”
« Generates text and html reports, and
* An electronically searchable database of results

Sources LDRA Testbed

Results
Database

Sl e
Meeting Customer Requirements #1 LDRA

A ‘model’ tailors the output to a customer’s or standard’s

reguirements
» Filters the reports to contain only those penalties of interest
* (All penalties recorded in the database)

Sources LDRA Testbed

Results
Database

Meeting Customer Requirements #2 LDRA

The ‘model’ also contains parameters that modify the analysis

and reporting
« e.g. Output reports filtered for values < some trigger
— As in: ‘don’t use integer literals, unless <N’ where N is defined in the model
» Analysis modified to reflect different exceptions permitted in different standards

_—

Sources LDRA Testbed

Results
Database

Presenter
Presentation Notes
e.g. Penalty 434 looks for implicit cast that changes signedness - a flag allows a special case for 0 used as unsigned

Meeting Customer Requirements #3 LDRA
Viewing the results

Interactive
view

TBvision®

Standard

reports
Results

Database

Custom
reports

Configurable reader

SATE tasks LDRA

e Create a model

— Mapping CWE rules to existing penalties
e 113 CWE issues mapped to 215 LDRA penalties

o Configure a results database reader for SATE specific features
— To post-process the analysis results, for manual review
— To generate the SATE required XML report

* For the synthetic tests
— Use the analysis to improve the detection of CWE issues
— and reduce false positives
— Contextual information, such as “Good”/’Bad” function names used to
configure the results reader
* For the application tests, such as Dovecot
— Sample the 917 files, looking for issues likely to be significant
— Repeat the analysis on the fixed code

Sample LDRA Testbed report output LDRA

22 wvoid CWEZ42 Use of Inherently Dangercuz Function basic 02 bad()

23 {
24 if (1)
J* (M) STATIC VIOLATION : 13% 5 : CWE 561,370,571: Construct leads to infeasible code: 41if */
25 {
26 {
27 char dst[DST S5Z]:
28 char *result;
25 JS* FLAW: gets is inherently dangerous and cannot be used safely. #/
30 J* INCIDENTIAL CWEl20 Buffer Overflow =2ince gets iz inherently dangerous and is
31 # an unbounded copy. */
3z result = gets(dst):
J* (M) STATIC VIOLATION : 44 5 : CWE 187,242,338,365,475,676: Use of banned function or variable: gets #/
33 f* Werify return value */
34 if{ NULL == result)
35 {
36 J* error conditiom */
37 printlLine ("Error Condition: alter control flow to indicate action taken™):;
38 exit(l):
39 }
40 d=t [DET_5Z-1] = '¥0';
41 printLine (d=t) ;
42 }
43 ¥
44 el=e
45 {
f* (M) VIOLATION : 1 J : CWE 3561,370,5371: Unreachable Code found: { *f
45 J/* INCIDENTAL: CWE 561 Dead Code, the code below will never run */
47 i

From CWE242_Use_of Inherently_Dangerous_Function__basic_02.c 13

L
Penalty code format | DRA

Penalties are reported with a code: ddd ?, where
— ddd is a number, and

— ?is the analysis phase where the issue was found
= Main Static Analysis

= Complexity

= Data Flow

= Information Flow

Cross reference

= Quality Report

= Quality System

= LCSAJ (Linear Code Sequence And Jump aka: jump-to-jump)
= Other

N« COX~-00O0
I

_
A TBvision® view of the same file

Source

J

ECE

0

File View

View Configure Website Links Help

2 E B BEBEBDE &

5 @ @

& X Results View

File Explorer
a b CWEM2.0

4[] CWE242 Use_of Inherently_Dangerous_Functic...

b @ Global Variables
4 [%5 Global Typedefs
#. twoints - struct _twaoints
[» E; Global Macros
4 E: Global Structures
b5l _twoints
B % Header Files

4§ CWE242_Use_of Inherently_Dangerous_Fun...

4 B Calls
Ep printline
Bo gets
Ep fgets
Bp exit
7 Return Type - void
I % goodl
& goodZ

b & CWE242_Use_of Inherently_Dangerous_Fun...

T File view | Class View

LDRA

: C - CWE Model m u Code Review : CWE242_Use_of Inherently_Dangerous_Function_basic_02.c: C - CWE | C++ - CWE Model m : 4 m
a~

B X

Unreachable Code found.

Construct leads to infeasible code.
4 ¥ goodl
Unreachable Code found.

Construct leads to infeasible code.
4 § good2
Unreachable Code found.

Construct leads to infeasible code.

4[] CWE242_Use_of Inherently_Dangerous_Function_basic_02.c
4 & CWE242 Use_of Inherently_Dangerous_Function_basic_02_bad

Use of banned function or variable. : gets

Use of banned function or variable. : gets

Use of banned function or vanable. : gets

v CWE242_Use_of Inherently_Dangerous_Function__basic_02_g...

Standard Code

CWE 561,570,571
CWE 187,242 338,365 475,676
CWE 561,570,571

CWE 561,570,571
CWE 187,242,338,365,475,676
CWE 561,570,571

CWE 561,570,571
CWE 187,242,338,365,475,676
CWE 561,570,571

Level of Violation Phase Code

Mandatory
Mandatory
Mandatory

Mandatory
Mandatory
Mandatory

Mandatory
Mandatory
Mandatory

1)
45
1395

1)
445
1395

1)
445
1395

L

For CWE242 Use_of Inherently_Dangerous_Function__basic_02.c
T

Presenter
Presentation Notes
good1 and good2 get the same penalties as the bad function because they still contain the banned function – but in code that is unreachable

Sample Raw LDRA Testbed Results

How many of each of the subset of 979 penalties

relevant to CWE have been found in the files analysed?
o 1115 files analysed — 30855 penalties reported
« (i.e. averaging 27.7 per file)

A B -
1 LDRAId count Descriptor
2 D1 10 Unused procedure parameter.
3 D6 216 Recursion in procedure calls found.
4 D3 829 DD data flow anomalies found.
5 D14 15 Attempt to change parameter passed by value.
6 D17 1155 Identifier not unique within *** characters.
7 D20 132 Mo declaration for variable found before use.
8 D41 9 Procedure call has no prototype declared.
9 D42 6 Local pointer returned in function result.
10 D45 1254 Pointer not checked for null before use: CWE-650-758-468-476
11 D49 19 File pointer not closed on exit: CWE-404-403-775-772

Ranked LDRA Testbed Results

15% of the penalties in this sample are all one issue
* Are these all required?
 If not, how can the analysis be made more discriminating?

A B C
1 LDRAId count Descriptor
2 5201 4653 Use of numeric literal in expression.
3 5382 3107 (void) missing for discarded return value.
4 512 2159 Mo brackets to then/else (added by Testbed).
5 D70 1862 DU anomaly, variable value is not used.
6 S604 1725 Use of numeric literal as array bound/subscript.
7 593 1662 Value is not of appropriate type: CWE-197-192
8 544 1261 Use of banned function or variable.
9 D45 1254 Pointer not checked for null before use: CWE-690-758-468-476
10 D17 1155 Identifier not unique within *** characters.

11 (5434 905 Signed/unsigned conversion without cast: CWE-195-197-196-192

Mapping LDRA Testbed Results to CWE

Using the model’'s map of CWE rules to LDRA Testbed penalties in reverse
 Which CWE issues is LDRA Testbed reporting?
* Where multiple CWE rules map to the same LDRA Testbed penalty
» the penalty is treated as matching any of the CWE rules
» its descriptor includes a list of all CWE issues linked to the same penalty

A B -
1 CWEId count Descriptor

|

I

| 2 78 44 Use of system function: CWE-88-78

| 3 121 1343 Stack-based Buffer Overflow

4 131 4 Insufficient space allocated: CWE-131-758-190-680
| 5 134 753 Insufficient formats in output function: CWE-134-758-686-688-685
| 6 170 52 Improper Null Termination

| 7 187 23 Partial Comparison

| a8 188 672 Pointer arithmeticis not on array: CWE-188-468

| 9 192 3519 Integer Coercion Error

| 10 195 765 Signed to Unsigned Conversion Error

| 11 242 49 Use of Inherently Dangerous Function

Traffic light analysis LDRA

For the synthetic tests, contextual information, like function

names, are used to classify the reports:
 Green the expected CWE issue reported in a “Bad” function
 Red the expected CWE issue reported in a “Good” function
 Amber the expected CWE issue reported in another function
e CrossTalk a CWE issue other than that expected is reported
« Missed the expected issue not reported in a “Bad” function

Where “the expected CWE issue” is indicted by the name of the file analysed, e.g.
CWEG674_Uncontrolled_Recursion__infinite_recursive_call 01.c

Sample Traffic light result LDRA
A B C D E F
1 Folder Green Red Amber Crosstalk Missed
2 CWEG/A 0 Jo 140 0 601 38
3 | CWE196 0 /5 128 0 612 19
4 | CWE4s3 0 60 95 0 A82 21
5 CWE475 0 38 60 0 1328 38
6 CWE363 0 37 63 0 364 19
J | CWE252 0 30 28 0 387 30
& | CWE129 0 32 88 0 1236 30
9 | CWE134 0 20 38 0 848 30
10 CWES47 0 25 42 0 346 19
11 CWE476 0 24 29 0 198 30
12 CWE135 0 22 31 0 897 30
13 CWESB3 0 22 49 0 229 29

e
Sample Traffic light result - review

 The preceding sample was purely mechanically generated

 Manual review then often clarified and removed ‘anomalies’
— e.g. from CWEG674 Uncontrolled _Recursion__infinite_recursive call 01.c

wold CWEGEY 4 Tncontrolled Fecur=ion infinite recursive call 01 _badi)
1

helper badi)
I

- CWEG674_Uncontrolled Recursion__infinite_recursive _call 01 bad
doesn’t contain any erroneous code
— but because its name includes “bad” and it doesn’t attract the
expected penalty, its reported as ‘Missed’

Presenter
Presentation Notes
CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() is not called recursively

CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() calls helper_bad

helper_bad calls itself recursively

e
Sample Traffic light result — review #2 LDRA

From CWE242 Use of Inherently Dangerous_Function__basic_02.c

ztatic woid goodl()
ifi0)

<% THCIDEHTAL: CWE 561 Dead Code. the code below will newver run *7

1

char d=st[D5T _57];

char #*result:

<% FLAW: get= iz inherently dangerous and cannot be used =afely. *7

<% THCIDEHTAL CWE1lZ0 Buffer Owerflow since gets 1= inherently dangerous and 1=

an unbounded copy. *7

result = get=s(dst);

<% Yerify return valus =~

1f({ HULL == result)

1
<% grror condition *
printLine("Error Condition: alter control flow to indicate action talken"):
exit(l):

I
d=t [DST SZ-1] = '=0°';
printline(d=st);

g2l=e

— The block of code still includes a call to a banned function, gets
— As this call is in unreachable code,

It is a mute point whether goodl should attract a CWE242 issue or not
— By default, the Testbed reports such issues — hence many of the Red items

22

Presenter
Presentation Notes
CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() is not called recursively

CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() calls helper_bad

helper_bad calls itself recursively

S —————————————————————————————————
Dovecot Dl

Having refined the analysis process with the synthetic tests,
» we applied the analysis to a sample of the Dovecot files
» we then applied a manual review to identify ‘real’ issues

136 client send tagline(cmd, t_strconcat|
J* (M) DATAFLOW VIOLATION : 45 D : CWE 468,476,620,758: Pointer not checked for null before use: resp code L
J* (M) DATAFLOW VIOLATION : 32 D : CWE 468,758: Attempt to use uninitialised pointer: resp code #

137 "MO [", resp code, "] Mailbox deoesn't exi=zt: ",

138 str zanitize(orig mailbox, MATLEOX MAX NAME LEN),

139 NUOLL)) »

140 brealk;

The same files were then analysed in the ‘fixed’ version, to check that the issue has

gone away
* note that in both case the use of the pointer without testing for NULL is reported

150 client send tagline(cmd, tL_strconcat|
S* (M) DATAFLOW VIOLATION : 45 D : CWE £6383,476&,6%0,758: Pointer not checked for null before use: resp code #f
151 "NO ", resp code, "Mailbox deoesn't exist: ",
152 str_sanitize (orig mailbox, MAILBOX MAX NaME LEN),
153 HUOLL)) ;
154 break:;

Challenges #1 — Focus of the CWE rules LDRA

e CWE-483: Incorrect Block Delimitation

— “Potential Mitigations: Always use explicit block delimitation and use static-
analysis technologies to enforce this practice”

— There are a lot of instances of code in the synthetic and application tests that
don’t use explicit block delimitation — as in the 15t example below

* Itwould appear that if (condition) statement; on a single line is acceptable

« though this is contradicted by the 2"d sample below
« orisit if (condition) break; that's the special case?
» Was this intended, and should the rule say so?

= in.=in port = htons(LISTEN _PORT)

1f (SOCKET _ERRCE == bind(listener. i(=truct sockaddr#)é= 1in. sizecfi(=_in))) break;
if (SOCKET ERROE == listenilistener, LISTEN BACKLOG)) breal:;
client = accept(listensr, HULL, NULL);

From CWE15_External_Control_of _System_or_Configuration_Setting_ w32_01.c

<% FLAW: Suspicious =emicolon before the 1f =tatement brace *7
if (= == 0;

d

printLinei "= == 0"];

From CWE483_Incorrect_Block Delimitation___semicolon_01.c

Challenges #2 — Focus of the CWE rules

« CWE-547: Use of Hard-coded, Security-relevant Constants
— “Summary:. The program uses hard-coded constants instead of symbolic
names for security-critical values.....
« Example char buffer[1024];”
— There are a lot of instances of code in the synthetic and application tests that
match the quoted bad example
— these are not false positives, as they match the rule’s criteria, but
— they are probably not what was intended to be flagged,
— SO at best can be described as ‘noise’
— Can “security-critical” be defined in a way that is detectable by static analysis?

e
Challenges #3 — Focus of the CWE rules LDRA

Some rules are expressed in a way that is not amenable to static analysis
— including some with associated synthetic tests

For example:

CWE-222: Truncation of Security-relevant Information

— “The application truncates the display, recording, or processing of security-
relevant information in a way that can obscure the source or nature of an
attack”

*CWE-440: Expected Behavior Violation

— “Afeature, API, or function being used by a product behaves differently than
the product expects”

Neither of these rules is the parent of a more detailed requirement

Also, the SATE model solution involves recognising the use of specific
algorithms and vulnerabilities associated with those algorithms

— On the whole, static analysis doesn’t recognise algorithms

26

e
Conclusions LDRA

« During the course of the evaluation, we made significant improvement in
the accuracy of CWE issue reporting

» Aholistic approach is needed
— mechanical analysis has to be backed up with manual review
— The challenge on the analysis is to reduce the manual burden, without loosing
Issues of concern
» ‘Contextual ignoring’ is promoted by security field
— our background is largely in safety
— software safety ought to be a superset of security, but
— the safety domain is inherently pessimistic
» the expectation is that all potential issues will be reported
— The security domain appears more focussed on outcomes
» ‘tell me about issues that will affect the output, not may’
— Hence the requirement for ‘contextual ignoring’
 ‘is the context such that this potential error can be ignored?’

For further information:

www.ldra.com

Info@ldra.com

http://www.ldra.com/�
mailto:info@ldra.com�

	Summary of LDRA’s participation in SATE 2011
	Introductions
	LDRA Technology, Inc
	LDRA Ltd - Worldwide Direct Offices
	Quality Model Application
	LDRA in the Aerospace
	LDRA in Power
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Meeting Customer Requirements #3� Viewing the results
	SATE tasks
	Sample LDRA Testbed report output
	Penalty code format
	A TBvision® view of the same file
	Sample Raw LDRA Testbed Results
	Ranked LDRA Testbed Results
	Mapping LDRA Testbed Results to CWE
	Traffic light analysis
	Sample Traffic light result
	Sample Traffic light result - review
	Sample Traffic light result – review #2
	Dovecot
	Challenges #1 – Focus of the CWE rules
	Challenges #2 – Focus of the CWE rules
	Challenges #3 – Focus of the CWE rules
	Conclusions
	For further information: ��www.ldra.com��info@ldra.com

