
Summary of LDRA’s
participation in SATE 2011

Introductions

• Clive Pygott
– Member ISO software vulnerabilities working group
– Member MISRA C++ committee
– Member of the working group drafting a proposed

secureC annex for the C language definition
• Jay Thomas

– Field Applications Engineer
• Liz Whiting (not present today)

– Member MISRA C committee

LDRA Technology, Inc

Founded 1975

San Francisco, Dallas, Boston & Washington DC

Provider of test tools & solutions

Metrics Pioneer

Consultancy, support & training

LDRA Ltd - Worldwide Direct Offices

LDRA Technology Inc
San Francisco CA USA

LDRA Technology Inc
Atlanta GA USA

LDRA Ltd
Newbury UK

LDRA Ltd
Wirral UK

LDRA sarl
Paris France

LDRA Ltd
Sydney Aus

LDRA Technology Inc
Dallas TX USA

LDRA Technology Inc
Boston MA USA

LDRA Technology Inc
S.Riding VA USA

LDRA Technology Pvt.
Ltd Bangalore, India

Quality Model Application

DO-178B/C (Levels A, B & C)
DO-278
MISRA-C:1998

MISRA-C:2004

MISRA C++:2008

MISRA AC AGC

IEC 61508 / IEC 61508:2010

ISO 26262

IEC 62304

Def Stan 00-55

CENELEC 50128

CERT C / CWE

High Integrity C++

JSF++ AV

HIS

IPA / SEC C

Netrino C

NUREG 6501

BS 7925

and related standards…

LDRA in the Aerospace

LDRA in Power

LDRA -
‘Power Tools’

Reports

Results
Database

Sources LDRA Testbed

LDRA Testbed analyses source code
• Looks for 979 individual properties

– referred to as “penalties”
• Generates text and html reports, and
• An electronically searchable database of results

LDRA Testbed® - Overview

A ‘model’ tailors the output to a customer’s or standard’s
requirements

• Filters the reports to contain only those penalties of interest
• (All penalties recorded in the database)

Reports

Results
Database

Sources LDRA Testbed

Model

Meeting Customer Requirements #1

The ‘model’ also contains parameters that modify the analysis
and reporting

• e.g. Output reports filtered for values < some trigger
– As in: ‘don’t use integer literals, unless <N’ where N is defined in the model

• Analysis modified to reflect different exceptions permitted in different standards

Reports

Results
Database

Sources LDRA Testbed

Model

Meeting Customer Requirements #2

Presenter
Presentation Notes
e.g. Penalty 434 looks for implicit cast that changes signedness - a flag allows a special case for 0 used as unsigned

Meeting Customer Requirements #3
 Viewing the results

11

Results
Database

TBvision®

Configurable reader

Standard
reports

Custom
reports

Interactive
view

SATE tasks
• Create a model

– Mapping CWE rules to existing penalties
• 113 CWE issues mapped to 215 LDRA penalties

• Configure a results database reader for SATE specific features
– To post-process the analysis results, for manual review
– To generate the SATE required XML report

• For the synthetic tests
– Use the analysis to improve the detection of CWE issues
– and reduce false positives
– Contextual information, such as “Good”/”Bad” function names used to

configure the results reader

• For the application tests, such as Dovecot
– Sample the 917 files, looking for issues likely to be significant
– Repeat the analysis on the fixed code

Sample LDRA Testbed report output

13 From CWE242_Use_of_Inherently_Dangerous_Function__basic_02.c

Penalty code format
Penalties are reported with a code: ddd ?, where

– ddd is a number, and
– ? is the analysis phase where the issue was found

• S = Main Static Analysis
• C = Complexity
• D = Data Flow
• I = Information Flow
• X = Cross reference
• Q = Quality Report
• U = Quality System
• J = LCSAJ (Linear Code Sequence And Jump aka: jump-to-jump)
• Z = Other

14

A TBvision® view of the same file

15 For CWE242_Use_of_Inherently_Dangerous_Function__basic_02.c

Presenter
Presentation Notes
good1 and good2 get the same penalties as the bad function because they still contain the banned function – but in code that is unreachable

Sample Raw LDRA Testbed Results

How many of each of the subset of 979 penalties
relevant to CWE have been found in the files analysed?

• 1115 files analysed – 30855 penalties reported
• (i.e. averaging 27.7 per file)

Ranked LDRA Testbed Results

15% of the penalties in this sample are all one issue
• Are these all required?
• If not, how can the analysis be made more discriminating?

Mapping LDRA Testbed Results to CWE
Using the model’s map of CWE rules to LDRA Testbed penalties in reverse
• Which CWE issues is LDRA Testbed reporting?

• Where multiple CWE rules map to the same LDRA Testbed penalty
• the penalty is treated as matching any of the CWE rules
• its descriptor includes a list of all CWE issues linked to the same penalty

Traffic light analysis

For the synthetic tests, contextual information, like function
names, are used to classify the reports:

• Green the expected CWE issue reported in a “Bad” function
• Red the expected CWE issue reported in a “Good” function
• Amber the expected CWE issue reported in another function
• CrossTalk a CWE issue other than that expected is reported
• Missed the expected issue not reported in a “Bad” function

Where “the expected CWE issue” is indicted by the name of the file analysed, e.g.
CWE674_Uncontrolled_Recursion__infinite_recursive_call_01.c

Sample Traffic light result

Sample Traffic light result - review
• The preceding sample was purely mechanically generated
• Manual review then often clarified and removed ‘anomalies’

– e.g. from CWE674_Uncontrolled_Recursion__infinite_recursive_call_01.c

21

‒ CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad
doesn’t contain any erroneous code
‒ but because its name includes “bad” and it doesn’t attract the

expected penalty, its reported as ‘Missed’

Presenter
Presentation Notes
CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() is not called recursively

CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() calls helper_bad

helper_bad calls itself recursively

Sample Traffic light result – review #2
From CWE242_Use_of_Inherently_Dangerous_Function__basic_02.c

22

‒ The block of code still includes a call to a banned function, gets
‒ As this call is in unreachable code,

It is a mute point whether good1 should attract a CWE242 issue or not
– By default, the Testbed reports such issues – hence many of the Red items

Presenter
Presentation Notes
CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() is not called recursively

CWE674_Uncontrolled_Recursion__infinite_recursive_call_01_bad() calls helper_bad

helper_bad calls itself recursively

Dovecot
Having refined the analysis process with the synthetic tests,
• we applied the analysis to a sample of the Dovecot files
• we then applied a manual review to identify ‘real’ issues

The same files were then analysed in the ‘fixed’ version, to check that the issue has
gone away

• note that in both case the use of the pointer without testing for NULL is reported

Challenges #1 – Focus of the CWE rules

• CWE-483: Incorrect Block Delimitation
– “Potential Mitigations: Always use explicit block delimitation and use static-

analysis technologies to enforce this practice”
– There are a lot of instances of code in the synthetic and application tests that

don’t use explicit block delimitation – as in the 1st example below
• It would appear that if (condition) statement; on a single line is acceptable

• though this is contradicted by the 2nd sample below
• or is it if (condition) break; that’s the special case?

• Was this intended, and should the rule say so?

From CWE15_External_Control_of_System_or_Configuration_Setting__w32_01.c

From CWE483_Incorrect_Block_Delimitation__semicolon_01.c

Challenges #2 – Focus of the CWE rules

• CWE-547: Use of Hard-coded, Security-relevant Constants

– “Summary: The program uses hard-coded constants instead of symbolic
names for security-critical values…..

• Example char buffer[1024];”
– There are a lot of instances of code in the synthetic and application tests that

match the quoted bad example
– these are not false positives, as they match the rule’s criteria, but
– they are probably not what was intended to be flagged,
– so at best can be described as ‘noise’

– Can “security-critical” be defined in a way that is detectable by static analysis?

Challenges #3 – Focus of the CWE rules
Some rules are expressed in a way that is not amenable to static analysis

– including some with associated synthetic tests

For example:
•CWE-222: Truncation of Security-relevant Information

– “The application truncates the display, recording, or processing of security-
relevant information in a way that can obscure the source or nature of an
attack”

•CWE-440: Expected Behavior Violation
– “A feature, API, or function being used by a product behaves differently than

the product expects”
Neither of these rules is the parent of a more detailed requirement

Also, the SATE model solution involves recognising the use of specific
algorithms and vulnerabilities associated with those algorithms

– On the whole, static analysis doesn’t recognise algorithms

26

Conclusions
• During the course of the evaluation, we made significant improvement in

the accuracy of CWE issue reporting
• A holistic approach is needed

– mechanical analysis has to be backed up with manual review
– The challenge on the analysis is to reduce the manual burden, without loosing

issues of concern
• ‘Contextual ignoring’ is promoted by security field

– our background is largely in safety
– software safety ought to be a superset of security, but
– the safety domain is inherently pessimistic

• the expectation is that all potential issues will be reported
– The security domain appears more focussed on outcomes

• ‘tell me about issues that will affect the output, not may’
– Hence the requirement for ‘contextual ignoring’

• ‘is the context such that this potential error can be ignored?’

For further information:

www.ldra.com

info@ldra.com

http://www.ldra.com/�
mailto:info@ldra.com�

	Summary of LDRA’s participation in SATE 2011
	Introductions
	LDRA Technology, Inc
	LDRA Ltd - Worldwide Direct Offices
	Quality Model Application
	LDRA in the Aerospace
	LDRA in Power
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Meeting Customer Requirements #3� Viewing the results
	SATE tasks
	Sample LDRA Testbed report output
	Penalty code format
	A TBvision® view of the same file
	Sample Raw LDRA Testbed Results
	Ranked LDRA Testbed Results
	Mapping LDRA Testbed Results to CWE
	Traffic light analysis
	Sample Traffic light result
	Sample Traffic light result - review
	Sample Traffic light result – review #2
	Dovecot
	Challenges #1 – Focus of the CWE rules
	Challenges #2 – Focus of the CWE rules
	Challenges #3 – Focus of the CWE rules
	Conclusions
	For further information: ��www.ldra.com��info@ldra.com

