

Sticking to the Facts II:
Scientific Study of Static Analysis

Tools

Center for Assured Software
National Security Agency

cas@nsa.gov

 SATE IV
Workshop

March 29, 2012

Agenda

• Background and Purpose

• NSA CAS Methodology Review

• 2011 Results/Trends

– Data Analysis and Visualizations

2

Presenter
Presentation Notes
Kris

Center for Assured
Software

 Mission: To positively influence the design,

implementation, and acquisition of Department of
Defense (DoD) systems to increase the degree of
confidence that software used within the DoD’s
critical systems is free from intentional and
unintentional exploitable vulnerabilities

3

Presenter
Presentation Notes
Kris

NSA CAS Methodology – A Review

4

Study Process
Overview

1. Generate test cases (Juliet Test Suite)
2. Analyze test cases per tool
3. Score results
4. Group test cases into Weakness Classes
5. Calculate statistics by each Weakness Class

5

Presenter
Presentation Notes
No tuning / training done on tools and no annotations added to code.

CAS Test Cases

• Artificial pieces of code developed to test software
analysis tools

• Mapped to CWEs
• In general, each test case contains:

– One flawed construct – “bad”
– One or more non-flawed constructs that “fix” the flawed

construct – “good”

6

Presenter
Presentation Notes
Some test cases are now “bad-only”

Bad-only are those test cases where the absence of the flaw doesn’t really make sense. For instance, making a socket call is an indication of malicious logic. The absence of a socket call to not call it so there is no “good” scenario.

Total Test Cases for 2010 9.5 million (JON) This might be LOC, but it’s not total test cases!!
Total Test Cases for 2011 13 million (JON) This might be LOC, but it’s not total test cases!!

void CWE467_Use_of_sizeof_on_Pointer_Type__double_01_bad()
{
 double * data;
 ...
 /* FLAW: Using sizeof the pointer and not the data type in
malloc() */
 data = (double *)malloc(sizeof(data));

}

static void goodG2B()
{
 double * data;
 ...
 /* FIX: Using sizeof the data type in malloc() */
 data = (double *)malloc(sizeof(*data));

}

Example of a Test
Case

7

 Advantages /
Limitations of Test

Cases
• Advantages

– Control over the breadth of flaws and non-flaws covered
– Control over where flaws and non-flaws occur
– Control over data and control flows used

• Limitations

– Simpler than natural code
– All flaws represented equally
– Ratio of flaws and non-flaws likely much different than in

natural code

 8

Presenter
Presentation Notes
Simplest form of flaw
22 different control flow patterns (18 in 2010)
28 different data flow patterns (22 in 2010)

Weakness Classes

Weakness Class Example Weakness (CWE Entry)

Authentication and Access Control CWE-620: Unverified Password Change

Buffer Handling CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks CWE-534: Information Leak Through Debug Log Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference
9

Presenter
Presentation Notes
Some CWE names are simplified

Scoring

• CAS is concerned with two things:
– What flaws does the tool report? (Recall)
– What non-flaws does the tool incorrectly report as a

flaw? (Precision)

10

Presenter
Presentation Notes
Talk here about FP, TP, FN

Precision

• Fraction of results from tool that were “correct”

• Same as “True Positive Rate”
• Complement of “False Positive Rate”

FPTP
TPPrecision

##
#
+

=

11

Recall

• Fraction of flaws that a tool correctly reported

• Also known as “Sensitivity” or “Soundness”

FNTP
TPRecall
##

#
+

=

12

Precision-Recall
Graph

13

Precision and Recall
Are Not Enough

• Precision and Recall don’t tell whole story
• Unsophisticated “grep-like” tool can get:

– Recall: 1
– Precision: 0.5
– Doesn’t accurately reflect that tool is noisy

• Limitation of CAS test cases
– Typically 1 or 2 non-flaws for each flaw

14

Presenter
Presentation Notes
(JON) The title is better than “Justification”.

Discrimination

• A “Discrimination” occurs when a tool:
– Correctly reports the flaw
– Does not report the non-flaw

• Each tool gets 0 or 1 discrimination for each test
case

15

Discrimination Rate

• Discrimination Rate is the fraction of test cases
where a tool reported discriminations

• Discrimination Rate ≤ Recall
– Every True Positive “counts” toward Recall, but not

necessarily toward Discrimination Rate

Flaws
tionsDiscriminaRatetionDiscrimina

#
#

=

16

2011 Methodology
Changes

• New flaws as well as data and control flow variants
were added

– Java Test Cases increased by 74%
– C/C++ Test Cases increased by 26%

• Test cases were enhanced
• Analysis was improved

– Recall calculation
– Test case weighting

• Tool configurations

17

Presenter
Presentation Notes
(JON) Just use that last bullet as a talking point to say that in 2010 we used the tools in their default configuration, however in 2011 we attempted to optimize the configurations for the test cases. Also, we reached out to vendors to provide feedback on their tool configurations and if we didn’t hear back from them we attempted to turn on all of the checkers (weakness IDs).

2011 Methodology
Changes (cont.)

Weakness Class Example Weakness (CWE Entry)

Authentication and Access Control CWE-620: Unverified Password Change

Buffer Handling CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks CWE-534: Information Leak Through Debug Log Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Malicious Logic CWE-506: Embedded Malicious Code

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference 18

Presenter
Presentation Notes
(JON) I’m not sure if we really need this slide since we’re only adding 1 row – we can just talk about this new weakness class elsewhere.

Some CWE names are simplified

2011 Study Results and Trends

19

C/C++

CWEs Covered Flaw Types Test Cases Lines of Code

2010 116 1,432 45,324 6,338,548

2011 119 1,489 57,099 8,375,604

Diff + 2.6% + 4.0 % + 26.0% + 32.1%

20

• Tools Studied
– 8 commercial
– 1 open source

Presenter
Presentation Notes
Test Cases available as Juliet Test Suite v1.1 at http://samate.nist.gov/SRD/testsuite.php
Lines of code are actual code lines (not lines that are blank or only comments). Counted using CLOC (cloc.sourceforge.net).
(JON) Mention the fact the although the CWEs covered and flaw types only slightly increased, the total number of test cases went up significantly due to the fact that we added more flow variants (i.e. more data/control flows)

Test Case Coverage
C/C++

C/C++ Test Cases (2010) C/C++ Test Cases (2011)

21

• Seven tools
• 45,324 Test Cases

• Nine tools
• 57,099 Test Cases

Presenter
Presentation Notes
In 2009 the data set was vastly different than in 2010. The 2010 and 2011 data sets are now very similar.
The “No Tools” % went down. This could be due to (but is not limited to):
Addition of tools
Expansion of flaw types into more areas the tools cover
Improvements in tools
Data from 2010 final report (as of 6 Apr 2011) and 2011 (as of 16 Mar 2012). Most 0% values are not exactly 0.

Test Case
Discriminated – C/C++

C/C++ Test Cases (2010) C/C++ Test Cases (2011)

22

Presenter
Presentation Notes
There wasn’t enough room to show the number of test cases, flaw types, etc. (they are on previous slides, however)
The “No Tools” % went down. This could be due to (but is not limited to):
Addition of tools
Expansion of flaw types into more areas the tools cover
Improvements in tools

 Test Case Coverage
and DR – C/C++

2011

23

Presenter
Presentation Notes
Final 2011 data (as of 15 Mar 2012); “average” here is the average of all 9 tools (doesn’t exclude tools that don’t cover the weakness class).

Improved Precision –
C/C++

24

Improved Recall –
C/C++

25

Precision and Recall
Less - C/C++

26

 Precision and Recall
Improved -

C/C++

27

Tool Combination –
C/C++

Tool #1 Tool #2

D
is

c.
 R

at
e

R
ec

al
l

D
is

c.
 R

at
e

R
ec

al
l

Tool #1 .24 .40 .51 .67

Tool #2 .51 .67 .38 .57

28

Presenter
Presentation Notes
For one Weakness Class. If really want a high assurance of a particular weakness class, then 2 tools can be combined to improve on recall and disc. rate.

2011 C/C++
Conclusions

• Tools Strongest in:
– Pointer and Reference Handling
– Initialization and Shutdown
– Buffer Handling

• Tools Weakest in:
– Information Leaks
– Authentication and Access Control
– Error Handling

29

2011 C/C++
Conclusions (cont.)

• Reported flaws in approximately 11 of the 14 (79%)
Weakness Classes

• Reported approximately 22% of the flaws on
Weakness Classes they covered

• Flaws in approximately 21% of the test cases were
not reported by any of the tools

• There were 18 test cases in which all of the tools
correctly found the flaw

30

Presenter
Presentation Notes
There were 18 test cases in which all of the tools correctly found the flaw, as opposed to 19 in 2010.

 Open Source vs.
Commercial Tools –

C/C++
• Did not perform the strongest in any of the

Weakness Classes
• Stronger than at least 1 commercial tool in 6

Weakness Classes
• In 4 Weakness Classes, was the weakest tool

31

Java

CWEs Covered Flaw Types Test Cases Lines of Code

2010 106 527 13,801 3,238,667

2011 113 751 23,957 4,712,718

Diff + 6.6% + 42.5% + 73.6% + 45.4%

32

• Tools Studied
– 7 commercial
– 2 open source

Presenter
Presentation Notes
Test Cases available as Juliet Test Suite v1.1 at http://samate.nist.gov/SRD/testsuite.php
Lines of code are actual code lines (not lines that are blank or only comments). Counted using CLOC (cloc.sourceforge.net).

Test Case Coverage
Java

Java Test Cases (2010) Java Test Cases (2011)

33

• Seven tools
• 13,801 Test Cases

• Nine tools
• 23,957 Test Cases

Presenter
Presentation Notes
In 2009 the data set was vastly different than in 2010. The 2010 and 2011 data sets are now similar.
Although the number of test cases and flaw types increased significantly, the “No Tools” % went down. This is most like due to the fact that one of the tools geared their weakness IDs towards the Java test cases (JON: I‘m not sure the best way to state this, however)
Also, note how the “Exactly One Tool” % increased (also likely due to the one tool gearing their weakness IDs towards the Java test cases.
Data from 2010 final report (as of 6 Apr 2011) and 2011 (as of 16 Mar 2012). Most 0% values are not exactly 0.

Test Case
Discriminated – Java

Java Test Cases (2010) Java Test Cases (2011)

34

Presenter
Presentation Notes
There wasn’t enough room to show the number of test cases, flaw types, etc. (they are on previous slides, however)
The “No Tools” % went down. This could be due to (but is not limited to):
Addition of tools
Expansion of flaw types into more areas the tools cover
Improvements in tools
As mentioned before, one of the new tools drastically improved the overall performance of the tools due to the vendor creating specific weaknessIDs geared towards our test cases.

 Test Case Coverage
and DR – Java

2011

35

Presenter
Presentation Notes
Final 2011 data (as of 15 Mar 2012); “average” here is the average of all 9 tools (doesn’t exclude tools that don’t cover the weakness class).

Precision Improved -
Java

36

 Precision and Recall
Improved –

Java

37

Tool Combination –
Java

38

Tool #1 Tool #2

D
is

c.
 R

at
e

R
ec

al
l

D
is

c.
 R

at
e

R
ec

al
l

Tool #1 .30 .57 .45 .68

Tool #2 .45 .68 .27 .43

Java Conclusions

• Tools Strongest in:
– File Handling
– Pointer and Reference Handling

• Tools Weakest in:
– Number Handling
– Malicious Logic
– Initialization and Shutdown

39

Java Conclusions
(cont.)

• Reported flaws in approximately 10 of the 13 (77%)
Weakness Classes

• Reported approximately 28% of the flaws on
Weakness Classes they covered

• Flaws in approximately 27% of the test cases were
not reported by any of the tools

• There were no test cases in which all of the tools
correctly found the flaw

40

Presenter
Presentation Notes
There were no test cases in which all of the tools correctly found the flaw as seen in 2010.

 Open Source vs.
Commercial Tools

Java
• None of the open source tools performed the

strongest in any of the Weakness Classes
• At least 1 open source tool was stronger than at

least 1 commercial tool in 7 Weakness Classes
• In 3 Weakness Classes, 1 open source tool was

ranked in the top 3
• In four Weakness Classes, the open source tools

were the weakest tools

41

2011 Study
Conclusions

• Tools are not interchangeable
• Different tools had different strengths, even

different by language
• None of the tools performed well across all

Weakness Classes
• Complementary tools can be combined to achieve

better results

42

Presenter
Presentation Notes
First three are identical to conclusions from 2009 study.
Add emphasis on “in Weakness Classes covered”.

Can Tools Be
Improved?

• Goodness of code
– Report proper coding techniques
– Aids in overall analysis of code

• Standardized Output
– Flaw location
– Results format
– Flaw Naming convention

43

Presenter
Presentation Notes
(JON) I’m attempting to say in the second bullet under “goodness of code” that it gives you more of a “big picture” feel for the code. If 100 flaws are reported, but 500 good techniques are reported, then this helps show that the code is better than code where 100 flaws are reported, but no good techniques are reported. I hope that makes sense, I just can’t think of a way to put it into a single bullet.

Questions?

• Juliet Test Suite v1.1 and Methodology Report (will
be) located at
http://samate.nist.gov/SRD/testsuite.php

• Contact Center for Assured Software at
CAS@nsa.gov

44

http://samate.nist.gov/SRD/testsuite.php�
mailto:CAS@nsa.gov�

• The End

45

2011 Test Case
Statistics

46

 CWEs
Covered

Flaw
Types

Test
Cases

Lines of
Code

C/C++ 116 1,432 45,324 6,338,548
Java 106 527 13,801 3,238,667

All Test Cases 177 1,959 59,125 9,577,215

• Need to update for 2011
Test Cases available as Juliet Test Suite v1.1 at
http://samate.nist.gov/SRD/testsuite.php

Presenter
Presentation Notes
Data from 2010 final report (as of 6 Apr 2011).
Lines of code are actual code lines (not lines that are blank or only comments). Counted using CLOC (cloc.sourceforge.net).

Scoring Tool Results

47

Scoring Tool Results

• Vast majority of tool results are automatically
scored with CAS created tool based on:

– CAS created mapping
• Between tool-specific result types and test case CWEs
• Tool results with a type mapped to the test case are “Positives”

– Function name
• “bad”  True Positive
• “good”  False Positive

• Test cases with no True Positives have a False
Negative added

48

Weakness Classes

49

Precision, Recall, and F-Score

50

Justification

• CAS is concerned with two things:
– What flaws does the tool report?
– What non-flaws does the tool incorrectly report as a

flaw? (false positives)

• CAS uses concepts from Information Retrieval in
examination of static analysis tool results

– Precision
– Recall
– F-Score

51

F-Score

• F-Score is defined as the harmonic mean of
Precision and Recall

• Combines values into one value to compare
• Tends toward lower value
• Less than arithmetic mean (unless Precision and

Recall are equal)









+
×

×=
RecallPrecision
RecallPrecisionScoreF 2-

52

Discriminations

53

2010 Study Conclusions

54

2010 Study
Conclusions

• Tools are not interchangeable
• Tools perform differently on different languages
• Complementary tools can be combined to achieve

better results
• Each tool failed to report a significant portion of the

flaws studied
– Average tool covered 8 of 13 Weakness Classes
– Average tool covered 22% of flaws in Weakness

Classes covered

55

Presenter
Presentation Notes
First three are identical to conclusions from 2009 study.
Add emphasis on “in Weakness Classes covered”.

Open Source vs.
Commercial Tools

• Open source C/C++ tool was limited overall
– Reported the flaws in a below-average fraction of the

test cases in every Weakness Class it covered
– Reported an above-average number of False Positives

on five of the seven Weakness Classes it covered

56

Open Source vs.
Commercial Tools

• Two open source Java tools studied had mixed
results on the Weakness Classes they covered

– In three Weakness Classes, an open source tool was
the strongest of all tools (based on F-Score)

• Control Flow Management • Code Quality
• Error Handling

– In four Weakness Classes, at least one open source
tool was stronger than at least one commercial tool

• Information Leaks • Initialization and Shutdown
• Injection • Miscellaneous

– In two Weakness Classes, the open source tools were
the weakest tools

• Auth. and Access Control • Pointer and Reference Handling
57

Presenter
Presentation Notes
CAVEAT: we ran tools in default configuration, so commercial tools may not turn on these checks by default.
Other 3 weakness classes were not covered by either open source Java tool (Encryption and Randomness, File Handling, Number Handling)
May want to mention that Pointer and Reference Handling is a pretty important area for Java (and it involves data flow analysis as opposed to simple “grep-like” behavior).

2011 Study Plans

58

Study Plans for 2011

• Update and expand Test Cases based on
community feedback

• Soliciting input from vendors on configuration
settings to use with their tools

• Considering additional tools
• Study scheduled to start in October 2011

59

Speaker Feedback
Surveys

• Please complete the Speaker Feedback Surveys
• This will help speakers to improve and for Black

Hat to make better decisions regarding content and
presenters for future events

60

Presenter
Presentation Notes
“Public Service Announcement”

Sticking to the Facts
Scientific Study of Static Analysis Tools

Center for Assured Software
National Security Agency

cas@nsa.gov

• Extra slides

62

Tool License Model C/C++ Java
Tool 1 Commercial  
Tool 2 Commercial  
Tool 3 Commercial  
Tool 4 Commercial  
Tool 5 Commercial  
Tool 6 Commercial 
Tool 7 Open Source 
Tool 8 Open Source 
Tool 9 Open Source 

Tools Studied

63

What is Static Analysis?

64

Presenter
Presentation Notes
Kris

Static Analysis

• Static analysis of software is a method of examining
software without executing it

• Analyzes software itself, not documentation
– Often done on software’s source code
– Can be done on compiled binaries

• Applicable to all software types and languages
– Tools focus on more popular types and languages

• Also known as:
– “Static Code Analysis”
– “Static Program Analysis”
– “Source Code Analysis”

65

Presenter
Presentation Notes
Kris
Can be done my a human, fully automated, or a mix.
All compiled (and some interpreted) software is statically analyzed by the compiler/interpreter. Some languages / compilers provide more static analysis than others.
Static Program Analysis is the Wikipedia page (as of March 2011)… I haven’t heard that term anywhere else. I’m thinking that someone is trying to make it clear that it doesn’t have to be on the source code.
Industry is moving away from “Source Code Analysis” since some tools examine the compiled code.

Static Analysis Tools

• Static analysis tools automate the process of doing
static analysis

• Commercial and no cost tools are available
• Vary widely in capabilities, features, and cost
• This presentation covers tools that identify and

report issues in the software
• Also known as:

– “Code Weakness Analysis Tools”
– “Static Application Security Testing Tools”

66

Presenter
Presentation Notes
Kris
Hatha Systems: “Code Weakness Analysis”
Gartner: “Static Application Security Testing”
We would love tools that look for “goodness”

Benefits of Static
Analysis Tools

• Identify errors in software (bugs)
– Including security issues
– Good at finding some types of issues

• Analyzes all parts of the software
– Unlike external testing (dynamic analysis) which only

examines the code paths exercised

• Automated, scalable, repeatable
– Unlike manual code review
– Can be used early and often

67

Presenter
Presentation Notes
Kris

Limitations of Static
Analysis Tools

• Most do not report positive properties (or lack
thereof)

• May report false positives (reports of an issue
where none exists) along with real results

• May report issues that are not important to you or
your software

• Cannot always definitively report issues
– Sometimes report only that an issue may be present at

a location
– Needs confirmation by a human

 68

Presenter
Presentation Notes
Kris
Gary McGraw of Cigital calls these tools “Badness-ometers”
If the tool reports no flaws, how much assurance do you have?

Limitations of Static
Analysis Tools

• Do not cover all flaw types
– Better at implementation issues vs. design issues
– Scrutinize vendor claims

• Typically miss issues (false negatives)
– May create false sense of security

• Tool coverage is detailed in the next section

69

Presenter
Presentation Notes
Kris
Vendors will claim “our tool can report flaws of type X” (where X is a broad category of issues) when what they mean is that they can find one specific sub-type of X in one language.
MITRE and DHS are working to develop a standard way for tools to claim which CWEs they cover.

Tools Studied

• Java Tools
– 7 Commercial
– 2 Open Source
– 2 New tools added in 2011

• C/C++ Tools
– 8 Commercial
– 1 Open Source
– 2 New tools added in 2011

70

Presenter
Presentation Notes
Moved old chart to end. Old chart listed tools separately.
The tools added to each language were all commercial tools
Only 2 new vendors were added as both vendors have tools covering each language family

Study Methodology
Overview

• Tools configured based upon vendor feedback
– By default, all rules are turned on

• Convert the results into a CAS-defined, common,
Comma Separated Value (CSV) format

• Score results
– Mark results relevant to test case as True Positives or

False Positives
– Add False Negatives

• Group test cases into “weakness classes”
• Calculate statistics for each weakness class

71

Presenter
Presentation Notes
No annotations added to code.
In 2010, tools were run using default configurations (i.e. “out-of-the-box”). In 2011, the CAS attempted to contact each vendor to get feedback on the best way to configure/run their tool.
If the vendors could not be reached, then all rules were turned on.

Differences from
NIST SATE/SAMATE

• We run each tool, not the tool vendor
• We use synthetic test cases instead of natural code
• We know where all the target flaws and non-flawed

constructs are intended to be
• We know what type of flaw and non-flaw each

construct is intended to represent

72

Presenter
Presentation Notes
Define here “National Institute of Standards and Technology’s Static Analysis Tool Exposition”
We see our work as complementary to SATE/SAMATE
We would love to see them adopt our methodology as part of their testing
We use “intended” here to soften the wording a bit that we may not be perfect (though our scoring assumes that we are).

void CWE134_Uncontrolled_Format_String__ 

 scanf_to_printf_01_bad()

{

 char buf[100];

 if (scanf("%99s", buf) == 1)

 {

 /* FLAW: buf (obtained from scanf) is

 passed as the format string to printf */

 printf(buf);

 }

}

Example of a Test
Case

73

Presenter
Presentation Notes
This example is no longer in the 2010 test case set (logic and test case name are a bit more complicated now). It is still useful for illustration, however.
In order to exploit this, program would have to be running as setuid/setgid.
Officially, this may be “undefined behavior” in the C specification, but in most implementations this will allow the user to crash the process and may allow for execution of user-supplied code.

static void good3()

{

 char buf[100];

 if (scanf("%99s", buf) == 1)

 {

 /* FIX: Use %s as a format string and

 pass buf as an argument */

 printf("%s", buf);

 }

}

Example of a Test
Case (cont’d)

74

Presenter
Presentation Notes
This example is no longer in the 2010 test case set (logic and test case name are a bit more complicated now). It is still useful for illustration, however.

2011 Tools Studied

• Java Tools
– 7 Commercial
– 2 Open Source

• C/C++ Tools
– 8 Commercial
– 1 Open Source

75

Presenter
Presentation Notes
2 New tools added for Java
2 New tools added for C/C++

Test Case Changes

CWEs Covered Flaw Types Test Cases Lines of Code

C/C++

2010 116 1,432 45,324 6,338,548

2011 119 1,489 57,099 8,375,604

Diff + 2.6% + 4.0 % + 26.0% + 32.1%

Java

2010 106 527 13,801 3,238,667

2011 113 751 23,957 4,712,718

Diff + 6.6% + 42.5% + 73.6% + 45.4%

Total

2010 177 1,959 59,125 9,577,215

2011 179 2,240 81,056 13,088,322

Diff + 1.1% + 14.3% + 37.1% + 36.7%

76

Presenter
Presentation Notes
Test Cases available as Juliet Test Suite v1.1 at http://samate.nist.gov/SRD/testsuite.php
Lines of code are actual code lines (not lines that are blank or only comments). Counted using CLOC (cloc.sourceforge.net).

Center for Assured
Software

• Mission: To positively influence the design,
implementation, and acquisition of Department of
Defense (DoD) systems to increase the degree of
confidence that software used within the DoD’s critical
systems is free from intentional and unintentional
exploitable vulnerabilities

• Strategy:
– Assess and Understand currently available Software

Assurance (SwA) Techniques and Technology
– Influence (Outreach to) the DoD, US Government, Private

Sector and Academia on SwA policy, development,
deployment and research

– Apply and implement current SwA Tools, Techniques and
methods to DoD and Intelligence Community clients

77

Presenter
Presentation Notes
Kris

Center for Assured
Software

• CAS Technology Focus Area
– Encourages the appropriate use of automation to

measure assurance properties of software
– “Let the code speak”
– Spends a significant amount of time looking for new

software assurance tools, testing tools and reporting on
tools to support software assurance analysis

78

Presenter
Presentation Notes
Kris

Weakness Classes

• For ease of analysis and understandability, tests
are grouped into “Weakness Classes”

• Weakness classes are defined as a set of test case

CWEs

79

Weakness Classes –
2011

Weakness Class Example Weakness (CWE Entry)

Authentication and Access Control CWE-620: Unverified Password Change

Buffer Handling CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks CWE-534: Information Leak Through Debug Log Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Malicious Logic CWE-506: Embedded Malicious Code REMOVE??*******************

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference

80

Presenter
Presentation Notes
Some CWE names are simplified

Example Disc. Rate
Graph

81

Presenter
Presentation Notes
I’d gloss over this, basically state that we graph discrimination rates like this.

C/C++ Flaws
2011

Flaws Covered Flaws Discriminated

82

Presenter
Presentation Notes
2011 (as of 16 Mar 2012).

Java Flaws
2011

Flaws Covered Flaws Discriminated

83

Presenter
Presentation Notes
2011 (as of 16 Mar 2012).

Test Case Scope

• Test cases are currently focused on:
– Functions available on the underlying platform

• Not the use of third-party libraries or frameworks
– Platform-neutral and Windows-specific functions

• No test cases specific to Linux, Mac OS, etc.
– C language vs. C++

• C++ is only used for flaw types that require it (such as leaks of
memory allocated with “new”)

– Java applications and Servlets
• No Applets or Java Server Pages (JSPs)

84

Study Purpose

• Study commercial and open source static analysis
tools for C/C++ and Java

– Ability to find security-related vulnerabilities in source
code

– Identify individual tool’s strengths/weaknesses
– Provide unbiased results
– Determine how combining tools impacts results

85

Presenter
Presentation Notes
(JON) When mentioning strengths/weaknesses – make sure that you mention that it is with respect to findings flaws�(JON) Unbiased results meaning that we do not have a stake with any vendor and we are purely providing results without saying which tool we think is the “best”��Summed up:
 What does tool find?
 What does tool miss?
 Where does tool have false positives?

Advantages of Test
Cases

• Control over the breadth of flaws and non-flaws
covered

– Study full range of tools’ capabilities

• Control over where flaws and non-flaws occur
– Allows for automated scoring of results

• Control over data and control flows used
– Study depth of tools’ analysis
– Test cases for many flaw types cover

• Simplest form of flaw (baseline)
• Various control flow patterns
• Various data flow patterns

 86

Presenter
Presentation Notes
Simplest form of flaw
22 different control flow patterns (18 in 2010)
28 different data flow patterns (22 in 2010)

Limitations of Test
Cases

• Simpler than natural code
– Tools may have “better” results on test cases than on

natural code

• All flaws represented equally
– Each flaw appears one time in test cases, regardless of

how common the flaw is in natural code

• Ratio of flaws and non-flaws likely much different
than in natural code

– In natural code, non-flaws are likely much more
common than flaws

87

	��Sticking to the Facts II:�Scientific Study of Static Analysis Tools��
	Agenda
	Center for Assured Software
	NSA CAS Methodology – A Review
	Study Process Overview
	CAS Test Cases
	Example of a Test Case
	Advantages / Limitations of Test Cases
	Weakness Classes
	Scoring
	Precision
	Recall
	Precision-Recall Graph
	Precision and Recall Are Not Enough
	Discrimination
	Discrimination Rate
	2011 Methodology Changes
	2011 Methodology Changes (cont.)
	2011 Study Results and Trends
	C/C++
	Test Case Coverage C/C++
	Test Case Discriminated – C/C++
	Test Case Coverage and DR – C/C++ 2011
	Improved Precision – C/C++
	Improved Recall – C/C++
	Precision and Recall Less - C/C++
	Precision and Recall Improved - �C/C++
	Tool Combination – C/C++
	2011 C/C++ Conclusions
	2011 C/C++ Conclusions (cont.)
	Open Source vs. Commercial Tools – C/C++
	Java
	Test Case Coverage Java
	Test Case Discriminated – Java
	Test Case Coverage and DR – Java �2011
	Precision Improved - Java
	Precision and Recall Improved – �Java
	Tool Combination – Java
	Java Conclusions
	Java Conclusions (cont.)
	Open Source vs. Commercial Tools Java
	2011 Study Conclusions
	Can Tools Be Improved?
	Questions?
	Slide Number 45
	2011 Test Case Statistics
	Scoring Tool Results
	Scoring Tool Results
	Weakness Classes
	Precision, Recall, and F-Score
	Justification
	F-Score
	Discriminations
	2010 Study Conclusions
	2010 Study Conclusions
	Open Source vs. Commercial Tools
	Open Source vs. Commercial Tools
	2011 Study Plans
	Study Plans for 2011
	Speaker Feedback Surveys
	Slide Number 61
	Slide Number 62
	Tools Studied
	What is Static Analysis?
	Static Analysis
	Static Analysis Tools
	Benefits of Static Analysis Tools
	Limitations of Static Analysis Tools
	Limitations of Static Analysis Tools
	Tools Studied
	Study Methodology Overview
	Differences from NIST SATE/SAMATE
	Example of a Test Case
	Example of a Test Case (cont’d)
	2011 Tools Studied
	Test Case Changes
	Center for Assured Software
	Center for Assured Software
	Weakness Classes
	Weakness Classes – 2011
	Example Disc. Rate Graph
	C/C++ Flaws�2011
	Java Flaws�2011
	Test Case Scope
	Study Purpose
	Advantages of Test Cases
	Limitations of Test Cases

