
SATE IV CVE-selected
Procedure and Observations

Vadim Okun, NIST
vadim.okun@nist.gov
March 29, 2012

The SAMATE Project
http://samate.nist.gov/

Presenter
Presentation Notes
Paul contributed several slides
I am a member of the SAMATE team

2

Analysis procedure for CVE-
selected test cases

Tool warnings
~52K

random
subset

related
to CVEs

Selection Methods:

Analyze for
correctness

and associate

Analyze
the data

Selected
warnings

to human
findings

Presenter
Presentation Notes
52K for CVE-selected + 185K for synthetic

Talk about “associate”
Analyze data – in progress…

Outline

• Procedure for random subset analysis
• Observations from analysis
• Suggestions for tool improvement

3

Presenter
Presentation Notes
Different analyses
Observations from analysis with charts and sample code

Procedure for Subset Analysis

• A selected set of warnings were analyzed by
experienced programmers
– This year it was Aurelien, Vadim, and Paul

4

Step 1 – select a warning

5

Presenter
Presentation Notes
We usually work on one program at a time, in this case, wireshark (vulnerable version). In working with just one program, one learns a little about the style, architecture, components, data structures, and so forth. We typically work on most severe first (“1” in column on right). Sometimes we work on those with the same CWE (column to the left) at the same time because of a common syndrome.

Step 2 – understand the warning
• What does it say about the code?

6

Presenter
Presentation Notes
We have various bits of information to work from. The weakness name comes from the tool. We map that to a CWE, if the tool does not provide a CWE. Some tools provide path information or textual description. Because the SATE format is relatively simple, it does not capture anywhere near all the information from some tools. Using a more sophisticated, standard format, like SAFES, would provide more information with less loss.

Step 3 – understand the code
• Does this happen? Could it cause problems?

• Doxygen provides call graphs and hyperlinks

to functions and definitions.

7

Step 3 – understand the code
• Original tool output has a lot of information and splices

code to show control flow.

8

Presenter
Presentation Notes
GrammaTech output has a lot of information. It splices together code to show the control flow, highlights important lines, and adds explanation.

Step 4 – write an evaluation

9

• Include code snippets and reasoning so
others can critique it

Presenter
Presentation Notes
Note that this is easily fixed: lower limit at line 525
 if (I < MAX_ENUM_ENTRIES - 1) {
or allocate a slightly larger buffer.

Decision process

10

Security

False

Insignificant

Unknown

Quality

Path ... Type ...

Context ...

Bug ...

Presenter
Presentation Notes
Reviewer makes several decisions in a row
Some decisions are tough

Remaining problems:
	More details needed for some categories
	Ambiguity remains > subjectivity
	Some steps are not considered
	New problems encountered
	Long guidelines > precise structure

Ongoing process of guidelines improvement

Step 4b – alert developers

• If there is clearly an error
– and it is easily fixed or high impact
– and it exists in the current version,

• tell the developers

11

Presenter
Presentation Notes
While writing up a report for 235518, I found that exactly the same type of problem occurs a few dozen lines later, too.

Step 5 – associate other warnings

12

Presenter
Presentation Notes
On line 530 (highlighted) along with warning 77377 we see two other warnings, which may be the same warning, but from another tool. (Some tools produce the same warning more than once.) We see warnings on lines 623 and 638, but they are likely to be related to protocol_name_len, not line 530.

This listing is much more useful for associating than the Doxygen since warning numbers have been added as comments.

Overlap for true/security

13

12

14

32

19

1

5

13

3

3

2

Jetty (2 tools)

Tomcat (2 tools)

Wireshark (5 tools)

Dovecot (6 tools)

1 tool 2 tools 3 or 4 tools

More overlap for some weakness categories

Presenter
Presentation Notes
Based on our analysis
Weaknesses, by number of tools that reported them
In parenthesis: number of tools that were run

CVEs

• Real-life vulnerabilities
• 88 CVEs in the 4 test cases

– Identify source, sink or path locations
– Match to tool warnings

14

Presenter
Presentation Notes
The ones that we identified
What is “path”?

Top 5 CWEs for CVEs

• Top CWEs cover 43 of 88 CVEs
• A total of 30 different CWE ids
• Many design flaws 15

8

8

10

12

5

0 5 10 15

Path trav

Info leak

XSS

Buffer

Null deref

C
Java

Presenter
Presentation Notes
Information exposure
Design level issues – hard for tools

16

Related warnings from tools

2

6

5

1

2

1

1

2

24

37

7

Jetty (5)

Tomcat (32)

Wireshark (43)

Dovecot (8)

Directly related Indirectly related None

• CVEs described better than in SATE 2010

Presenter
Presentation Notes
In parentheses – number of manual findings
In SATE 2010, analyzed Wireshark and Tomcat. The results are better this time. Although the results are not compatible since different tools were run.

Related Warnings for Top 5 CWEs

17

1

7

2

2

2 5

8

3

10

3

Path trav (8)

Info leak (8)

XSS (10)

Buffer (12)

Null deref (5)

Directly related Indirectly related None

• Related warnings from tools for 8 CWEs

Presenter
Presentation Notes
Lots of XSS found

CVE-2006-7195 Not Found

• JSP Standard Tag Library (JSTL)
<td>${header["host"]}</td>

• Should understand popular libraries and
frameworks

18

Presenter
Presentation Notes
Host request-header field is printed to the web page without filtering
Simple example.
Should use JSTL tag fn:escapeXml() to filter

On discrimination

• Reporting a weakness when there is one
• Keeping quiet when there is none

• Varies a lot by tool and weakness category

19

CVE-2009-3550 Found

Vulnerable version:
1314 item = item -> parent;

1318 item = item -> parent;

Tool warning: pointer item last assigned on line 1314
could be NULL and is dereferenced at line 1318

20

Presenter
Presentation Notes
NULL pointer dereference

CVE-2009-3550 Found

Fixed version:
#define GET_ITEM_PARENT(x) \

 ((x->parent!=NULL)?x->parent:x)

item = GET_ITEM_PARENT(item);

 item = GET_ITEM_PARENT(item);

No tool warning here. Perfect!
21

CVE-2006-7196 / 2009-0781

Vulnerable version:
String role = request.getParameter(“role”);

…

<%= role %>

22

Reported

CVE-2006-7196 / 2009-0781
Not discriminated

Fixed version:
String role = request.getParameter(“role”);

…

<%= filter(role) %>

23

Reported anyway

• Plenty of much more complex cases

Presenter
Presentation Notes
Call chains can be deep
This is a simple example. There are much more complex examples
Need to analyze control and data flow

Not analyzing complete code paths
Long code chain between receiving input and filtering

24

Human Analysis

• Wireshark dissectors are protocol decoders
• Chose Intelligent Platform Management

Interface (IPMI) dissector for analysis
– Fuzzing
– Manual source code review

Presenter
Presentation Notes
Lots of protocols in Wireshark
Just one dissector due to size of Wireshark

Add a design chart for Wireshark - of dissector

May do several slides instead, or add detailed slides in case someone asks.
Extra info:
- Why chose IPMI dissector?
- What kinds of fuzzing (details about fuzzing from the document)
- Describe the buffer overflow issue. Simple. Why no tool found it?
A diagram to describe their procedure, similar to Aure’s slides?
A diagram to describe why chose the dissector (and why didn’t choose another program) together with their procedure
 Didn’t choose dovecot because tried last time with no luck, very secure
 Didn’t choose Jetty or Tomcat because too few tools were run on it – remember, our goal is to evaluate tools

25

Human Analysis Results

• Buffer overrun in vulnerable version
• Corrected in fixed version
• Corresponds to CVE-2009-2559

CVE-2009-2559 Not Found

static const int *tsel[] = { &ett_ipmi_se_XX_b1,
&ett_ipmi_se_XX_b2, &ett_ipmi_se_XX_b3, &ett_ipmi_se_XX_b4 };

for (i = 0; offs < len; i++, offs++) {

 s_tree = proto_item_add_subtree(ti, *tsel[i]);

26

tsel declared with size 4

i is not checked and goes out of bounds

• Tools routinely find such weaknesses. Why not here?
• Did tools find/analyze the code?

Presenter
Presentation Notes
Complex call chains leading to the function?
There are many source files that have no warnings from tools. Are they perfect? Probably not.

Summary

• Find and analyze more code
• Better discrimination
• Better understand libraries and frameworks
• Participate in future SATEs 

27

	Slide Number 1
	Analysis procedure for CVE-selected test cases
	Outline
	Procedure for Subset Analysis
	Step 1 – select a warning
	Step 2 – understand the warning
	Step 3 – understand the code
	Step 3 – understand the code
	Step 4 – write an evaluation
	Decision process
	Step 4b – alert developers
	Step 5 – associate other warnings
	Overlap for true/security
	CVEs
	Top 5 CWEs for CVEs
	Related warnings from tools
	Related Warnings for Top 5 CWEs
	CVE-2006-7195 Not Found
	On discrimination
	CVE-2009-3550 Found
	CVE-2009-3550 Found
	CVE-2006-7196 / 2009-0781
	CVE-2006-7196 / 2009-0781�Not discriminated
	Human Analysis
	Human Analysis Results
	CVE-2009-2559 Not Found
	Summary

