
SATE IV Background

Vadim Okun, NIST
vadim.okun@nist.gov
March 29, 2012

The SAMATE Project
http://samate.nist.gov/

2

Cautions on Using SATE Data

• Our analysis procedure has limitations
• In practice, users write special rules, suppress

false positives, and write code in certain ways
to minimize tool warnings

• There are many other factors that we did not
consider: user interface, integration, etc.

• So do NOT use our analysis to rate/choose tools

Presenter
Presentation Notes
Our goal is NOT to choose the “best” toolsAdd a funny cartoon or comment?

Analyzing Source Code Analyzers

3

X

X

X

X

Program

Buf
Leak
Race
…

Security?
Quality?
Insignificant?
False?
?

Tool A
Tool B
Tool C

X

Presenter
Presentation Notes
X means weakness, arrows mean…Describe the picture on the right!Tools that work on source codeAdd about synthetic test cases or remove the slideWhat weaknesses exist in real programs?What do tools report for real programs?Do tools find important weaknesses?237k warnings

Warning Selection Methods

1. Random subset
2. Related to CVEs
3. Related to human findings
4. Synthetic test cases

4

Presenter
Presentation Notes
Synthetic test cases – precisely characterized weaknessesJuliet

5

SATE IV timeline

• Provide test sets to teams (31 July 2011)
• Teams run their tools, return reports (31 Oct)
• Analyze tool reports, with feedback from

teams (12 March 2012)
• Experience sharing at workshop (here & now)
• Teams can submit a research paper (May)
• Publish data (Sep - Dec 2012)

Presenter
Presentation Notes
Longer scheduleAnalysis – iterative, with help from teamsAnalysis delayed

6

Participating teams

• Buguroo BugScout
• Concordia University Marfcat
• Cppcheck
• Grammatech CodeSonar
• LDRA Testbed
• Monoidics INFER
• Parasoft C++test and Jtest
• Red Lizard Software Goanna

7

Test cases
• CVE-selected vulnerable/fixed pairs:

– Dovecot: secure IMAP and POP3 server – C
– Wireshark: network protocol analyzer – C
– Tomcat: servlet container – Java
– Jetty: servlet container – Java
– WordPress: blogging – PHP – no tool runs

• All are open source programs
• 96k LoC (Jetty) to 1.6M LoC (Wireshark)

• 59k synthetic C/C++ and Java test cases

Presenter
Presentation Notes
Used some of the same test cases last yearAll are open source programsAll have aspects relevant to securityTest cases that we choseVery large test cases, required a lot of effort from the tool makersIs Jetty by Mortbay?Tim Boland describe Juliet in the following talk

8

Tool reports

XML HTML DB

Original tool formats • Teams converted reports to
SATE format
– SAFES format - optional
– Some original reports

• Described environment in
which they ran tool

• Some teams tuned their tools
• Some teams provided analysis

of their tool warnings

…

SATE
format

Presenter
Presentation Notes
No one used SAFES format this year, may try next year

9

Analysis procedure for CVE-
selected test cases

Tool warnings
~52K

selected
randomly

related
to CVEs

Selection Methods:

Analyze for
correctness

and associate

Analyze
the data

Selected
warnings

to human
findings

Presenter
Presentation Notes
52K for CVE-selected + 185K for syntheticTalk about “associate”Analyze data – in progress…

10

Warning Subset Selection
For vulnerable versions only

• We assigned severity if a tool did not
• Avoid warnings with severity 5 (lowest)
• Statistically select from each warning class
• Select more warnings from higher severities
• Select 30 warnings from each of 15 tool reports

– 1 report had only 6 warnings
– Did not analyze Marfcat warnings

• Total is 426

Presenter
Presentation Notes
Tool warning selection procedure We selected 30 warnings from each tool report using the following procedure: - Randomly select one warning from each warning class (identified by a warning name) with severities 1 through 4. - While more warnings are needed, repeat: - Randomly select 3 of the remaining warnings (or all remaining warnings if there are less than 3 left) from each warning class with severity 1, - Randomly select 2 of the remaining warnings (or all remaining warnings if there are less than 2 left) from each warning class with severity 2, - Randomly select 1 of the remaining warnings from each warning class (if it still has any warnings left) with severity 3. - If more warnings are still needed, select warnings from warning class with severity 4, then select warnings from warning class with severity 5. If a tool did not assign severity, we assigned severity based on weakness names and our understanding of their relevance to security. Hard – to assign severity

11

Correctness categories

• True security weakness
• True quality weakness
• True but insignificant weakness
• Weakness status unknown
• Not a weakness

Presenter
Presentation Notes
Security – impacts security, feasible pathInsignificant – it is hard to determinedangerous function, without regard to its use in codeQuality – new this yearQuality - Poor code quality, but not relevant to security or security hard to determineUnknown - Unable to determine correctnessNot a weakness - Invalid conclusion by tool

12

CVEs

• Identify the CVEs
– Locations in code

• Find related warnings from tools
• Can tools discriminate between versions

– Or report for a fixed version also?
• Goal: focus our analysis on real-life

exploitable vulnerabilities

Presenter
Presentation Notes

13

Human findings
For IPMI protocol of Wireshark only

• Security experts analyze test case
– Mike Cooper and David Lindsay from Cigital

• Look for important weaknesses
– Root cause, with an example trace

• Look for related warnings from tools

Presenter
Presentation Notes
One finding, same as CVE

Analysis procedure for synthetic
test cases

14

Tool
warnings

~185K

Mechanically
match warnings
 by name/CWE

In “bad” code?

In “good” code?

TP

FP

• Precisely characterized weaknesses
• Mechanical matching is not perfect

If no match: ignore

Presenter
Presentation Notes
59k (including good test cases)Small test casesAurelien will talk about the method and results for Juliet later

SATE over time

• 2008: First try: analyze warnings
• 2009: Subset selection, more analysis

categories, human findings
• 2010: CVE-selected test cases, improved

analysis guidelines
• IV: Added synthetic test cases

15

16

Differences from SATE 2010

• Synthetic test cases
• Same test cases for CVE-selected and sample analysis
• Describe CVEs better
• Test cases pre-compiled in a Virtual Machine
• More time to run tools, analyze outputs

• Still, much can be improved…

Presenter
Presentation Notes
For analysis of correctness and associating tool warningsDeveloper of Dovecot fixed some bugsWill talk about future improvements during the discussion session in the afternoon

17

Thanks to teams!

Presenter
Presentation Notes
For taking the risk to participate!All of them worked on SATE in one way or anotherCan I mention NSA CAS?Cigital – could take from a previous slideOther SAMATE team members?

18

19

Questions

• What weaknesses exist in real programs?
• What do tools report for real programs?
• Do tools find important weaknesses?

• Focus on tools that work on source code
• Defects that may affect security
• Goal is NOT too choose the “best” tools
• This is the 3rd SATE (1st in 2008)

Presenter
Presentation Notes
Rewrite the 3rd question

20

SATE goals

• To enable empirical research based on large test sets
• To encourage improvement and adoption of tools

• NOT to choose the “best” tools

21

SATE common tool output format

<weakness id=“23”>
 <name cweid=“79”>SQL Injection</name>
 <location id=“1” path=“dir/f.c” line=“71”/>
 …
 <grade severity=“2” probability=“0.5”/>
 <output> Query is constructed
 with user supplied input … </output>
 …
</weakness>

one or more
traces

1 to 5, with 1 –
the highest

optional

that it is true

…and other annotation

Presenter
Presentation Notes
Some fields are optionalTools can provide additional information about traces: explanation and fragment for each location

22

Lessons learned

• Guidelines for analysis often ambiguous –
need to be refined even more

• Our analysis has inconsistencies and lapses
• Careful analysis takes longer than expected

– We do not know the code well
• Tool interface is important to understand a

weakness

23

Analysis procedure

• We cannot know all weaknesses in the test cases
• Impractical to analyze all tool warnings

So analyze the following:

• Method 1. A subset of warnings from each tool
report

• Method 2. Tool warnings related to manually
identified weaknesses

24

SATE tool output format

• Common format in XML
• For each weakness

– One or more trace - locations - line number and pathname
– Name of weakness and (optional) CWE id
– Severity: 1 to 5 (ordinal scale), with 1 – the highest
– Probability that the problem is true positive
– Original message from the tool
– And other annotation

25

Our analysis

• Correctness of warning
• Associate warnings that refer to the same

(or similar) weakness

Presenter
Presentation Notes
Give an example for different perspectives

	Slide Number 1
	Cautions on Using SATE Data
	Analyzing Source Code Analyzers
	Warning Selection Methods
	SATE IV timeline
	Participating teams
	Test cases
	Tool reports
	Analysis procedure for CVE-selected test cases
	Warning Subset Selection�For vulnerable versions only
	Correctness categories
	CVEs
	Human findings�For IPMI protocol of Wireshark only
	Analysis procedure for synthetic test cases
	SATE over time
	Differences from SATE 2010
	Thanks to teams!
	Slide Number 18
	Questions
	SATE goals
	SATE common tool output format
	Lessons learned
	Analysis procedure
	Slide Number 24
	Our analysis

