
Exposing Security Risks
For Commercial Mobile

Devices (CMDs)

Jeff Voas & Angelos Stavrou
NIST

George Mason University

Why Do I Care?

Commercial Mobile Devices have access to a
wide-range of functionality and ship with
complex code-base:
•  Fully Functional Linux system
•  Proprietary device drivers with NO access to code
•  Permissive policy model
•  Capability to perform a wide range of operations

•  3 (three) different types for location tracking
•  Many more through meta-data (geo-tagging)

BUT, I am secure: I am using Anti-Virus!!! Right?

Risks in Mobile Security Supply Chain

Devices

Secure Verify Test Deploy

E
nt

er
pr

is
e

S
ec

ur
ity

E

nt
er

pr
is

e
S

ec
ur

ity

E
nt

er
pr

is
e

S
ec

ur
ity

E

nt
er

pr
is

e
S

ec
ur

ity

E
nt

er
pr

is
e

S
ec

ur
ity

D
ev

ic
e

P

ro
vi

si
on

in
g

Hardware & App
Providers

Current Mobile Anti-Virus

Commercial AV vendors are not ready for
mobile:

•  Drain battery quickly
•  Similar Results with their Desktop Counterparts
•  There are no guaranteed for success in detection

•  Cannot Identify non-preclassified threats
•  CarrierIQ is an example, a “benign” and “legitimate”

application
•  Some of them “call-back” home and require constant

updates

But is it that bad?

The real picture: Malicious Apps exist...

Analyzed ~267,000 Applications from the
Google Android Market

•  Thousands with incorrect/permissive manifest
•  Hundreds with excessive functionality that can

be constituted as malicious
•  Hundreds of Trojans (i.e. take over existing,

legitimate applications)
•  Who will download these apps?
•  People who use SEARCH to find apps
•  Virtually everyone…
•  Two infection vectors:

- Regular Web Search
- Search inside the Mobile App Market

The real picture: Malicious Apps exist...

A multifaceted problem:

v  Developers maybe well-intended but…
v They do not necessarily understand the mission

or the security/policy requirements
v They make mistakes
v They use third-party libraries and code

v  The Android permission model is neither
sound nor complete

v  Intentions, Reflection, JNI, Webkit, others…
v  Android permissions are enforced inside

Dalvik not everywhere in the device

What about existing Analysis Tools?

•  Commercial application testing tools cover
regular, non-Android specific Bugs:
–  No Security Analysis of the Code Functionality
–  No Power Analysis of the Application

components and code
–  No Profiling of the resource consumption of

individual applications
–  Cannot Regulate/Deny the access and use of

phone subsystems (Camera, Microphone, GPS..)
•  Existing tools do not cover Program

Functionality
–  We reveal the application capabilities and access

7

Analysis of HTC Logger (CarrierIQ)

8

v Application Vetting & Testing

v Device Lock-down and Encryption of ALL Data
and Communications

v Enforcement of Security Policies in the Android
Framework

v Second-level Defenses placed in the Android
Linux Kernel
v Prevent Attacks that bypass Android Security Framework

v Android has Inherited some (if not all) of the Linux
Vulnerabilities

v Java Native Interface to Linux Libraries a potential
Avenue for Exploitation

Defense in-Depth:
Multiple Levels of Security

Hardened Android Platform

10

•  Custom modified Android
OS and Linux Kernel

–  Additions, deletions, and
modifications

–  Preference towards Open
Source Solutions

•  Security Stack
–  Data At Rest Encryption
–  Data In Transit Protections
–  Authentication
–  App Vetting and Control
–  Device Integrity Checks

Linux Kernel

Libraries
Surface
Manager

Camera
Driver

USB
Driver

Keypad
Driver

Bluetooth
Driver
WiFi

Driver
Power

Management
Flash Memory

Driver

Binder (IPC)
Driver

Audio
Driver

Display
Driver

OpenSSL
256 AES libc

WebKit

SQLite
OpenGL

/ES FreeType

Media
Framework

SGL

Android Runtime
Core

Libraries

Dalvik Virtual
Machine

Application Framework
Window
Manager

Package
Manager

Telephony
Manager

Content
Providers

Resource
Manager

Location
Manager

View System Notification
Manager

Device
Administration

Activity
Manager

Applications

Phone

Video
Driver

Serial
Driver

Telephony
Server &

TAPI

Direct FB

Frame Buffer

Telephony
Interface

App 1

EncFS sudo

Android
Debug Bridge

Google Stock

zeroize

App 2 App 3 …

DARPA Developed/
Modified SW

Standard Android /
Vendor Provided

DISABLED /
REMOVED

Encrypted File System

FUSE
Library

Progression of Testing

Ultimately the Testing assists in POLICY
Enforcement

•  Tailored to the Android Permission Model
•  Can allow Location-Based Policies
•  Curtails excessive permissions and enforces a

tighter security model

Modifications on the Android Engine to enable
dynamic policies

•  Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

•  Regulate access to critical/restricted resources

Application Policy Enforcement

Conclusions
Assuring the Secure Operation of Smart Devices
has a wide-range of requirements!
 "
v  Application Testing"

v Static & Dynamic"
v In-Field Instrumentation"
v Power Behavior Metering & Policing !
"

v Physical Device Security"
v Lock-Down of the Device I/O (USB, WiFi, etc.)"
v Encryption of Data both on the Phone & Network"
v Securing Provisioning Process "

