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Why Do I Care? 

Commercial Mobile Devices have access to a 
wide-range of functionality and ship with 
complex code-base: 
•  Fully Functional Linux system 
•  Proprietary device drivers with NO access to code  
•  Permissive policy model 
•  Capability to perform a wide range of operations 

•  3 (three) different types for location tracking 
•  Many more through meta-data (geo-tagging) 
 
 

BUT, I am secure: I am using Anti-Virus!!! Right? 
 
 
  



Risks in Mobile Security Supply Chain 

Devices 
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Current Mobile Anti-Virus 

Commercial AV vendors are not ready for 
mobile: 

•  Drain battery quickly 
•  Similar Results with their Desktop Counterparts 
•  There are no guaranteed for success in detection 

•  Cannot Identify non-preclassified threats 
•  CarrierIQ is an example, a “benign” and “legitimate” 

application 
•  Some of them “call-back” home and require constant 

updates 

 
 
 
 
 
 
  

But is it that bad? 



The real picture: Malicious Apps exist... 

Analyzed ~267,000 Applications from the 
Google Android Market 

•  Thousands with incorrect/permissive manifest 
•  Hundreds with excessive functionality that can 

be constituted as malicious 
•  Hundreds of Trojans (i.e. take over existing, 

legitimate applications) 
•  Who will download these apps? 
•  People who use SEARCH to find apps 
•  Virtually everyone… 
•   Two infection vectors:  

- Regular Web Search 
- Search inside the Mobile App Market 



The real picture: Malicious Apps exist... 

A multifaceted problem: 

v  Developers maybe well-intended but… 
v They do not necessarily understand the mission 

or the security/policy requirements 
v They make mistakes 
v They use third-party libraries and code 

 

v  The Android permission model is neither 
sound nor complete 

v  Intentions, Reflection, JNI, Webkit, others… 
v  Android permissions are enforced inside 

Dalvik  not everywhere in the device 



What about existing Analysis Tools? 

•  Commercial application testing tools cover 
regular, non-Android specific Bugs: 
–  No Security Analysis of the Code Functionality 
–  No Power Analysis of the Application 

components and code 
–  No Profiling of the resource consumption of 

individual applications 
–  Cannot Regulate/Deny the access and use of 

phone subsystems (Camera, Microphone, GPS..) 
•  Existing tools do not cover Program 

Functionality 
–  We reveal the application capabilities and access 
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Analysis of HTC Logger (CarrierIQ) 
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v Application Vetting & Testing  

v Device Lock-down and Encryption of ALL Data 
and Communications 

v Enforcement of Security Policies in the Android 
Framework 

v Second-level Defenses placed in the Android 
Linux Kernel 
v Prevent Attacks that bypass Android Security Framework 

v Android has Inherited some (if not all) of the Linux 
Vulnerabilities 

v Java Native Interface to Linux Libraries a potential 
Avenue for Exploitation  

 

Defense in-Depth:  
Multiple Levels of Security 



Hardened Android Platform 
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•  Custom modified Android 
OS and Linux Kernel 

–  Additions, deletions, and 
modifications 

–  Preference towards Open 
Source Solutions 

•  Security Stack 
–  Data At Rest Encryption 
–  Data In Transit Protections 
–  Authentication 
–  App Vetting and Control 
–  Device Integrity Checks 
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Progression of Testing 



Ultimately the Testing assists in POLICY 
Enforcement 

•  Tailored to the Android Permission Model 
•  Can allow Location-Based Policies 
•  Curtails excessive permissions and enforces a 

tighter security model 
 

Modifications on the Android Engine to enable 
dynamic policies 

•  Control the underlying Dalvik engine to report 
absence/depletion of resources instead of lack of 
permissions 

•  Regulate access to critical/restricted resources 
 

 

 
Application Policy Enforcement 



Conclusions 
Assuring the Secure Operation of Smart Devices 
has a wide-range of requirements!
 "
v   Application Testing"

v Static & Dynamic"
v In-Field Instrumentation"
v Power Behavior Metering & Policing !
"

v Physical Device Security"
v Lock-Down of the Device I/O (USB, WiFi, etc.)"
v Encryption of Data both on the Phone & Network"
v Securing Provisioning Process "


