
Enabling a Software Assurance
Ecosystem through Standards & OSSy g

David A. Wheeler
Institute for Defense Analyses

2008-10-14

OutlineOutline

P bl St i d l i t l• Problem: Stovepiped analysis tools
• Goal: Move to standards-based ecosystem

– Via standards: OMG’s KDM, SBVR; RDFVia standards: OMG s KDM, SBVR; RDF
– Intend OSS government-funded components

• Demonstration
– Formalize CWEs (using SBVR)

• Clarify meaning & enable…
– Compliance test case generators– Compliance test case generators
– Simplified analyzers

2

Analysis tools: Stovepipe to
Ecosystem

Q i (Wh l k f)
Single tool

Program
under

Translate to
analyzable Analyzable

f
Search

Queries (What to look for), patterns

Results

g

Stovep

under
analysis

y
format format for issues

Results

Existing tools developed this way, and they work.

pipe

Existing tools developed this way, and they work.
But costly, only cover subset, can’t mix & match best of breed,
user queries (if supported) are tool-proprietary. Instead, break up…

E

Program
under

Translate to
analyzable

Analyzable Search

Queries (What to look for): SBVR, patterns

Results

E
cosyste

3

under
analysis

analyzable
format

Format: KDM for issues
Results

em

SwA ecosystemSwA ecosystem

• SwA ecosystem enables:• SwA ecosystem enables:
– Interchangeable parts
– Each component could come from different supplier;

can select “best of breed”(s)can select best of breed (s)
– Each component can be addressed domain experts
– Components can be used for multiple disciplines &

multiple purposes
• Enabled by standards from multiple organizations, e.g.:

– KDM (OMG), SBVR (OMG), RDF (W3C), CWE (MITRE)
• Doesn’t eliminate existing tool suppliers...

– It enables users to combine them
– Tool suppliers can simply implement import/export

using standards

4

DemonstratrionDemonstratrion

• Pilot investment by DoD, NIST and DHS to demonstrate thePilot investment by DoD, NIST and DHS to demonstrate the
value of formalization and standardization to drive

– Software Assurance analysis
– Formalize CWEs (clarify meaning)

C li h ki– Compliance checking
– Generation of test cases
– Generation of penetration and exploit tests

Generation of virtual patches– Generation of virtual patches
• Pilot successfully demonstrated, using standards: Formalizing

some CWEs, generating test cases, analyzed binary code
• Plan to release government-funded pieces as OSS

Suite not enough for a “real tool” but– Suite not enough for a “real tool”, but…
– Enough to show how to apply it

5

Formalized CWEs used for Generation of
Test Cases

Test
Source

Snippet thatGenerateComplexity
Case

Generator

Snippet that
includes given CWE

(C, C++, Java)

Complexity
Rules

Formalized
CWE (in
SBVR)

Can be used for many purposes, e.g.:
• CWE Reference Implementation for review
• SAMATE Reference Dataset

6

Formalized CWE used in analysis of production code

Binary orFormalized
Formalized
CWE (in
SBVR)

Binary or
Source Code

Formalized
Uninitialized Variable (CWE 457)

Null Dereference (CWE 476)
Heap Overflow (CWE 122)

Input

Data Flow
Binary/S

plus 26 whitebox definitions

Repository
(in KDM
Format)

Analyzer
Analyze PopulateData Flow

Analysis
Rules

y/
ource
Code
Parser

Report on potential
In demonstration, analysis was performed
on three application binaries with known
vulnerabilities corresponding to the

Once reviewed for correctness Formalized CWE was used to

7

weakness, location
and trace

p g
selected CWE types, using proprietary x86-
binary-to-KDM tool

ConclusionConclusion…

Standards based ecos stem• Standards-based ecosystem
– Permits mix-and-match of best

componentscomponents
• Demonstrated standards-based approach

really can work in this contextreally can work in this context
– Many possible applications

• Supports assurance case by providing• Supports assurance case, by providing
objective & repeatable evidence for claims

8

