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P bl St i d l i t l• Problem: Stovepiped analysis tools
• Goal: Move to standards-based ecosystem

– Via standards: OMG’s KDM, SBVR; RDFVia standards: OMG s KDM, SBVR; RDF
– Intend OSS government-funded components

• Demonstration
– Formalize CWEs (using SBVR)

• Clarify meaning & enable…
– Compliance test case generators– Compliance test case generators
– Simplified analyzers
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Analysis tools: Stovepipe to 
Ecosystem
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Existing tools developed this way, and they work.
But costly, only cover subset, can’t mix & match best of breed,
user queries (if supported) are tool-proprietary. Instead, break up…
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SwA ecosystemSwA ecosystem

• SwA ecosystem enables:• SwA ecosystem enables:
– Interchangeable parts
– Each component could come from different supplier; 

can select “best of breed”(s)can select best of breed (s)
– Each component can be addressed domain experts
– Components can be used for multiple disciplines & 

multiple purposes
• Enabled by standards from multiple organizations, e.g.:

– KDM (OMG), SBVR (OMG), RDF (W3C), CWE (MITRE)
• Doesn’t eliminate existing tool suppliers...

– It enables users to combine them
– Tool suppliers can simply implement import/export 

using standards
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DemonstratrionDemonstratrion

• Pilot investment by DoD, NIST and DHS to demonstrate thePilot investment by DoD, NIST and DHS to demonstrate the 
value of formalization and standardization to drive

– Software Assurance analysis
– Formalize CWEs (clarify meaning)

C li h ki– Compliance checking
– Generation of test cases
– Generation of penetration and exploit tests

Generation of virtual patches– Generation of virtual patches
• Pilot successfully demonstrated, using standards: Formalizing 

some CWEs, generating test cases, analyzed binary code
• Plan to release government-funded pieces as OSS

Suite not enough for a “real tool” but– Suite not enough for a “real tool”, but…
– Enough to show how to apply it

5



Formalized CWEs used for Generation of 
Test Cases

Test
Source

Snippet thatGenerateComplexity
Case

Generator

Snippet  that 
includes given CWE 

(C, C++, Java)

Complexity 
Rules

Formalized
CWE (in 
SBVR)

Can be used for many purposes, e.g.: 
• CWE Reference Implementation for review
• SAMATE Reference Dataset
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Formalized CWE used in analysis of production code
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Report on potential 
In demonstration, analysis was performed 
on three application binaries with known 
vulnerabilities corresponding to the 

Once reviewed for correctness Formalized CWE was used to  
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ConclusionConclusion…

Standards based ecos stem• Standards-based ecosystem
– Permits mix-and-match of best 

componentscomponents
• Demonstrated standards-based approach 

really can work in this contextreally can work in this context
– Many possible applications

• Supports assurance case by providing• Supports assurance case, by providing 
objective & repeatable evidence for claims
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