
0

Karen Mercedes Goertzel, CISSP
Booz Allen Hamilton

Software Assurance Forum
16 October 2008

Enhancing the development life
cycle to produce secure software

1

Not the same as software that performs “security functions”

– though such software is high-consequence, so should be secure

To be secure, software must exhibit three properties

– Dependability: Executes predictably and operates correctly under all conditions,
including hostile conditions, including when the software comes under attack or
runs on a malicious host.

– Trustworthiness: Contains few if any vulnerabilities or weaknesses that can be
intentionally exploited to subvert or sabotage the software’s dependability. In
addition, to be considered trustworthy, the software must contain no malicious
logic that causes it to behave in a malicious manner.

– Survivability (a.k.a. “Resilience”): Able to (1) either resist (i.e., protect itself
against) or tolerate (i.e., continue operating dependably in spite of) most known
attacks plus as many novel attacks as possible, and (2) recover as quickly as
possible, and with as little damage as possible, from those attacks that it can
neither resist nor tolerate.

What is secure software?

2

Why is the security of software important?
Software is everywhere

Software implements critical and high-consequence functions

– Military, economic, medical, etc.

– It monitors and controls safety- and life-critical physical systems (embedded,
SCADA)

– It manipulates, protects, and exposes extremely sensitive information

Software is subject to threats throughout its life cycle

– in development (mainly insider threats)

– in distribution and deployment (mainly insider, some outsider threats)

– during operation (outsider and pre-planned insider threats, e.g., exploitation
of backdoors)

– in sustainment (mainly insider threats)

3

What influences whether software is secure?

Life cycle principles and practices: The practices used to develop the software,
and the principles that governed its development, testing, distribution,
deployment, and sustainment;

Development tools: The programming language(s), libraries, and development
tools used to design, implement, and test the software, and how they were used
by the developers;

Acquired components: How commercial-off-the-shelf (COTS) and open source
software (OSS) components were evaluated, selected, and integrated;

Deployment configuration: How the software was configured during its
installation;

Execution environment: The threats and protections to which higher-level
software is exposed in its underlying and surrounding execution environment;

Practitioner knowledge: Security awareness and knowledge of the software’s
analysts, designers, developers, testers, and maintainers…or their lack thereof.

Size, complexity, autonomy: Of the software itself

4

What constitutes a secure life cycle?

Security criteria at all SDLC checkpoints (design and code reviews, tests, etc.)

Secure software development principles and practices

Adequate requirements

Adequate architecture and design that

– Reflect correct developer assumptions

– Form an adequate basis for implementing software that will

• Operate in a dependable and trustworthy manner

• Use only appropriate and secure interfaces to external
components/services, administrator consoles, users

• Anticipate state changes that could result from misuse/abuse-caused
errors, failures

– Address security concerns associated with COTS and OSS components

Secure coding practices

5

What constitutes a secure life cycle? cont’d

Secure assembly/integration of acquired/reused components that

– Ensures that all programmatic interfaces and procedure calls are inherently
secure or have necessary security mechanisms added

– Minimises exposure (to external access) of high-risk and known-vulnerable
components

Security testing (black, white, and grey box)

Secure distribution and deployment

– Fully “sanitised” software executable(s): no residual unsafe coding constructs
and embedded sensitive data, developer backdoors, etc.

– Distribution on media or via communications channels that adequately protect
the software from tampering

– Default configuration settings are maximally restrictive

– Readable, accurate user, administrator, and installer documentation

6

What constitutes a secure life cycle? cont’d

Secure sustainment: Maintenance, vulnerability management, and patch
issuance, with customers encouraged to apply patches and keep software
updated

Supportive development, testing, and deployment tools

Secure configuration management systems and processes

Security-knowledgeable developers, testers, installers

Secure project management and upper management commitment to security

7

Secure SDLC principles: whole life cycle

Minimize the number of high-value/high-consequence targets

Don’t expose vulnerable and high-consequence components

Deny attackers the means to compromise the software

Always assume the impossible will happen

Never go with unvalidated assumptions

Security software ≠ secure software

8

Secure SDLC practices: whole life cycle

Secure configuration management

Security training/education

Secure SDLC methodology

Leveraging of abuse/misuse
cases and attack models

9

Requirements for secure software

All software shares three overarching security needs:

– It must be dependable under anticipated operating conditions, and remain
dependable under hostile operating conditions

– It must be trustworthy in its own behavior, and in its inability to be
compromised by an attacker through exploitation of vulnerabilities or
insertion of malicious code

– It must be survivable, i.e., resilient enough to recover quickly to full
operational capability with a minimum of damage to itself, the resources and
data it handles, and the external components with which it interacts

Challenges:

1. Capturing negative (constraint) and non-functional (property, attribute, and
assurance) requirements

2. Deriving their corollary testable functional requirements

3. Verifying specified requirements

10

Security-oriented requirements methodologies

Praxis High Integrity Systems' Requirements Engineering VErification and
VAlidation (REVEAL)

http://www.praxis-his.com/reveal/

CMU SEI Security Quality Requirements Engineering (SQUARE)

http://www.cert.org/archive/pdf/05tr009.pdf

CMU SEI Trustworthy Refinement through Intrusion-Aware Design (TRIAD)

http://www.sei.cmu.edu/publications/documents/03.reports/
03tr002.html

Appropriate and Effective Guidance in Information Security (AEGIS)

http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/
icges.pdf

http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/
thesis.pdf

11

Security-oriented requirements methodologies cont’d

Knowledge Acquisition in autOmated Specification (KAOS)

Haley, Charles B., Robin Laney, Jonathan D. Moffett, and Bashar Nuseibeh,
“Security Requirements Engineering: A Framework for Representation and
Analysis”. In IEEE Transactions on Software Engineering, October 2007

http://www.the-haleys.com/chaley/papers/Thesis-Final-DS.pdf

http://www.the-haleys.com/chaley/papers/Haley-SESS06-p35.pdf

http://oro.open.ac.uk/2491/01/AOSD04-Haley-final.pdf

Security-oriented Aspect Oriented Modeling (AOM)

Xu, Dianxiang, Vivek Goel and K. Nygard. “An Aspect-Oriented Approach to
Security Requirements Analysis”. In Proceedings of the 30th Annual
International Computer Software and Applications Conference, Chicago,
Illinois, 17-21 September 2006, Volume 2, pp. 79-82

12

Security modeling for requirements capture
(and test case definition)

Security use cases, misuse cases, and abuse cases

Attack patterns

Threat models

Other modeling techniques

– Attack trees and graphs

– Anti-models

– State transition diagrams

13

Architecture-level protections for software

Architecture-level protections for software

Application-level firewalls/gateways

Intrusion prevention systems

Malware detection systems

Anomaly detection/monitoring systems

Virtual machines, “sandboxes”

Trusted processor modules (TPMs)

Security kernels, secure microkernels, trusted operating systems, MILS

Code signature validators

14

Secure design principles and practices
Can be mapped to the three general security principles

15

Additional secure design practices

Architecture and design modeling

Analysis of design against attack scenarios (built from misuse/abuse cases,
attack models, attack patterns)

Minimising risk from execution environment, while leveraging trustworthy
environment constraints and protections

Writing a design specification that is easily comprehensible and backwards and
forwards traceable

16

Secure design modeling to…
Anticipate security-relevant behaviors of individual components, intercomponent
interactions, system-environment interactions

Identify functions that need to be modified or constrained

Identify inter-component interfaces that need to be filtered or protected

Detect and correct errors in/omissions from requirements, architecure, and design
assumptions

Identify design-level weaknesses, vulnerabilities, and failure modes

Identify and "engineer to minimise" conflicts between component assumptions about other
components

Identify Identify and "engineer to minimise" conflicts between individual component and
whole system assumptions

Reveal security dependencies between the system (including its individual components) and
its execution environment

Analyze the security impact of new or changed requirements

Analyze the security impact of adding, deleting, or substituting components

Reveal conflicts between the specification and the design, the architecture and the design,
the design and the implementation, etc.

17

Secure coding practices

Follow secure coding standards and guidelines
Review code as you write
Learn to recognise and avoid language-specific security issues
Leverage secure coding and compilation tools

18

Secure coding guidelines

Validate all input

Keep code small and simple

Use a consistent coding style

Make code forward and backward traceable

Code for reusability and maintainability

Allocate memory and resources carefully

– Clear caches frequently

– Deallocate objects as soon as they are no longer needed

Minimize retention of state information

Leverage security through obscurity (only as a deterrence measure)

Avoid unauthorized privilege escalation

Use consistent naming

Treat aliases symmetrically

19

Secure coding guidelines cont’d

Be cautious when using dynamic linking

Minimize use of global variables

Limit variables to the smallest scope possible

Use encapsulation cautiously

Implement security-aware error, exception, and anomaly handling

– Send only generic (uninformative) error messages to the user

– Log error information in full

Leverage attack patterns

20

Secure assembly/integration

Evaluate security of COTS and OSS components before committing to their
acquisition/use

Implement constraints and mitigations for:

– dormant and dead code, unused functions

– known vulnerabilities

– obscure and conflicting security assumptions among components

– malicious code (embedded and delivered)

Leverage application framework security

21

Acquired software: security challenges

Trustworthiness of pedigree (discussed later)

Inadequate security testing

– Excuses given: lack of time, lack of resources, lack of expertise

Threats to software don’t disappear just because
software’s security doesn’t get tested

Documentation adequacy

– What documentation is available?

– Is it technical, detailed, and accurate enough to provide a basis for making
informed decisions about the software’s security?

Security of distribution

– Are adequately robust security mechanisms and distribution channels used, to
prevent tampering, malware insertion?

22

Acquired software: security challenges cont’d

Security in sustainment: vulnerability management and patching

– How committed is the supplier/development team long term to maintenance
and patching?

– Does the supplier/development team support bug and vulnerability reporting
and tracking, with timely response?

23

Evaluating software security before acquisition

Determine, for each function in the system design, what the design’s
assumptions are regarding:

– The component’s expectations of security services and protections from its
environment

– The security aspects of the component’s interface with its environment, e.g., is
a secure API used?

– The security aspects of the component’s interfaces with other components,
e.g., is a secure RPC or messaging protocol used?

24

Evaluating security before acquisition cont’d

After identifying software with the needed functionality, perform a security
evaluation that answers these questions

– Are the software’s security assumptions consistent with the security
assumptions made by and about the component the software will implement?

– Can unused functions and interfaces be removed, disabled, or fully isolated
without affecting the correct execution of other functions?

• If the software is OSS or legacy source code, can dormant and dead code
be safely removed?

– Does the software expose and provide access paths (intended or unintended)
to its vulnerabilities? (“attack surface”)

The open design and source code availability of
OSS should make security evaluation easier

25

Evaluating security before acquisition cont’d

– If attacked, what is the likelihood that the software will be compromised or
make data, environment, other components vulnerable?

• Are exploitable vulnerabilities caused by inadvertent errors, anomalies,
failures? Are these internal or externally sourced?

• How easily can a failure be forced?

• Can unauthorized functions (e.g., administrator functions from a user
interface) be accessed?

• Can unintended functions (e.g., associated with dormant code or dead
code) be executed?

• Does function execution occur at the wrong time?

• Do functions execute in the wrong order?

26

Evaluating security before acquisition cont’d
Risk-based security analysis and test techniques

Tests most useful for pre-acquisition software evaluation

– Static (white box) and dynamic (grey box) source code analyses

– Security fault injection (source code and/or binaries)

– Fuzz testing

– Binary scanning

– Reverse engineering of components to be used for critical/high consequence
functions (e.g., for code review, function extraction analysis)

– Vulnerability scanning and pen testing of deployed systems containing
acquired software

1 and 2 require source code

27

Evaluating security before acquisition cont’d
Risk-based security analysis and test techniques cont’d

Static and dynamic analysis of source code for discovering

– Non-secure coding constructs, interfaces, state changes, other vulnerabilities

– Dormant code (code of unused functions), dead code (code from previous
versions, no longer used but dangerous to remove), or malicious code

Code review only possible for OSS, reused legacy
legacy source code, source reverse-engineered from binaries

Automated tools to support most software security analyses and tests

– See NIST Software Assurance Metrics and Tool Evaluation (SAMATE) data on
tools (http://samate.nist.gov/index.php/Main_Page)

28

Trustworthiness of pedigree
What can be discovered about…

Development methodologies, tools, practices used to build the software?

– If OSS, did project team monitor each developer’s initial contribution or only
his/her later modifications and updates?

– Was a secure CM system or trusted repository used for software asset
protection and version control?

Some major OSS projects (e.g., Linux, Apache)
publish extensive documentation of their practices

Requirements the software was built to satisfy?

– Is the specification available for review?

– If so, were software security/assurance requirements included?

– Are the specified requirements relevant to the security goals of the system in
which the software will be used?

29

Trustworthiness of pedigree cont’d
What can be discovered about… cont’d

The software’s review and testing regime?

– Need to assume that security was not considered during reviews, tests unless
there’s adequate evidence to the contrary

OSS can make independent review, testing
easier thanks to source code availability

The software’s developers?

– Did the development process include checks/controls to establish developers’
identities and trustworthiness? On what basis?

– Is anything known of developers’ geographical locations, nationalities,
affiliations, ideologies, loyalties?

For OSS, it’s often possible to discover developers’ identities (at least
who they claim to be). Not true for most proprietary software.

30

Trustworthiness of pedigree cont’d
Current state of the art in pedigree info discovery

Service providers (e.g., Palamida, Black Duck Software) discover pedigree
“hallmarks” in source code in repositories, COTS products, large
software systems

Previously, main focus was license enforcement

Palamida now offers service that focuses on security

Discovered pedigree data provided only to paying subscribers

Pedigree discovery only practical for OSS.

Comparable discovery for binaries would require extensive
expert reverse-engineering (often prohibited by license)

31

Trustworthiness of pedigree cont’d
What does knowledge of pedigree buy you?

Knowledge of pedigree allows fairly reliable assumptions to be made about how
software was built and maintained, and by whom

– The more that is known, the more reliable these assumptions

Ability to determine pedigree trustworthiness should be a key factor in decision-
making on whether/how to proceed with software security evaluation

– Inadequate info = need for deeper security analysis + vulnerability mitigation
+ environment-level isolation and constraints to separate untrusted from more
trusted software

– No pedigree info = basis for rejection, especially of software to be used in

• trusted or high-consequence systems

• national security systems with U.S.-only content requirements (NOTE:
U.S.-only content claims are very hard to prove)

32

Security benefits of OSS
Greater scrutiny

OSS conforms to Saltzer & Schroeder Open Design principle, i.e., “Security must
not depend on attacker ignorance.”

– Proprietary hiding of source code = a form of security-through-obscurity (a
weak deterrent against reverse-engineering at best)

Open design and open code mean OSS can receive much more scrutiny than
proprietary software

– But…could openness threaten security by increasing attacker visibility into
exploitable weaknesses and vulnerabilities?

Most major OSS projects incorporate code reviews – some security-focused.
Examples:

– Mozilla Security Bug Bounty Program ($500)

– Linux: hierarchical review, “sparse” tool

– Disseminated review groups, e.g., OpenBSD, Debian-audit

33

More contributors to OSS “community process” = more scrutiny

– “Big name” OSS gets the most scrutiny, e.g., Linux, Apache

– OSS written in obscure languages or for small niche audiences does not
receive much scrutiny

Independent reviews

– Several vendors make a business of scrutinizing OSS code, e.g.,

• Fortify Software: Java Open Review Project
(http://opensource.fortifysoftware.com/)

• Palamida: Top 5 Most Overlooked Open-Source Security Vulnerabilities
(and their available fixes) (http://www.palamida.com/node/513)

– Independent review findings often reported on Bugtraq

Security benefits of OSS cont’d
Greater scrutiny

34

Security benefits of OSS cont’d
Does more scrutiny = better security?

All the scrutiny in the world can’t ensure OSS is secure unless

The reviewers are security-aware and knowledgeable

The problems they find get fixed, ideally before code is released

For vulnerabilities found after deployment, patches publicized and widely
disseminated

35

Security benefits of OSS cont’d
Open source code can be modified

OSS users can modify the source code to mitigate vulnerabilities, satisfy their
own security requirements

But…how many users actually modify OSS code?

Consider: Can modified code safely be submitted back to OSS project?

– This is required by some open source licenses

– Developer who does modification needs to understand potential impacts –
security, usability, etc. – when submitted code is further changed by other
developers

– If modifications are too specialised, they may not be accepted for integration
back into the OSS code base

– If rejected modification must be maintained as custom code, OSS cost-benefit
is reduced

36

Can vulnerabilities in acquired software be fixed?

By adding security constraints such as wrappers, filters, isolation mechanisms
(e.g., sandboxes, VMs, TPMs)?

Through software dynamic translation at runtime?

Through judicious rewriting of problematic source code?

Through use of compiler security extensions?

By replacing non-secure libraries with secure libraries?

Can a more secure alternative be found?

Can multiple simpler, smaller components be assembled to achieve the same
functionality?

Would it be cheaper in whole-life cycle terms to custom develop?

37

DHS Vulnerability Discovery and Remediation
Open Source Hardening Project

Coverity contracted to evaluate popular OSS, locate vulnerabilities

Symantec and Stanford University contracted to remediate vulnerabilities

40+ OSS packages—including Linux, Apache, MySQL, Perl/Python/PHP)—evaluated
for vulnerabilities

11 packages fully remediated: Amanda, NTP, OpenPAM, OpenVPN, Overdose, Perl,
PHP, Postfix, Python, Samba, TCL

38

Vulnerability and patch management
OSS-specific concerns

“As much as 30 percent to 50 percent of the code in new commercial
software products may have originated in open-source programs.”

- Mark Tolliver, CEO, Palamida

It’s not always obvious whether and which OSS is included in large software
systems or proprietary (COTS) products

– When an OSS project releases a patch, it may not be clear whether the patch
applies to your system/COTS package

If using OSS in your systems development, you need to

– track where all OSS modules originate

– establish a process for tracking, quickly downloading, and deploying all OSS
project-issued patches

– instead of copying OSS code into your software code base, manage OSS
separate modules/components to be dynamically-linked/loaded at compile
time – this will make OSS easier to find and patch

39

Software security testing

Leverage misuse/abuse cases, attack models, security checklists for test cases

Leverage automated tools (http://samate.nist.gov)

White and grey box testing
– static analysis (original source or source reverse engineered from binary)
– dynamic analysis
– fault injection
– property-based testing

Black box testing
– fault injection
– fuzz testing
– binary analysis
– function extraction
– black box debugging
– vulnerability scanning
– penetration testing

40

Test timing throughout the SDLC

41

Secure distribution and deployment

Preparing to distribute

– Clean up code to remove backdoors, sensitive data, etc.

– Obfuscate bytecode and runtime-interpreted source code

– Apply DRM to prevent source code viewing, copying

– Apply digital signatures for anti-tamper

Secure distribution

– Online: authenticated, encrypted channel

– Offline: tamperproof media

Secure installation

– Environment “lock down”

– Separate directories for code/program data vs. control data

– Configure as securely as possible

42

Secure sustainment

Post-deployment refactoring/reengineering

– Follow same secure SDLC practices as “new build” software

– Include security testing in regression testing

Ongoing vulnerability management

– Forensic analysis of incidents for
indicators of vulnerabilities

– Track vulnerability reports, apply
issued patches to COTS and OSS
components

– Develop, test (effectiveness, impact),
disseminate patches for custom
components

Counteract software aging:
rejuvenate, reconfigure

43

Security-enhanced SDLC methodologies

Comprehensive Lightweight Application Security Process (CLASP)

http://searchappsecurity.techtarget.com/searchAppSecurity/
downloads/clasp_v20.pdf

http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

Microsoft Security Development Lifecycle (SDL)

Howard, Michael and Steve Lipner. The Security Development Lifecycle
(Microsoft Press, 2006)

http://msdn2.microsoft.com/en-us/library/ms995349.aspx

http://blogs.msdn.com/sdl/

Gary McGraw’s Seven Touchpoints

McGraw, Gary. Software Security: Building Security In (Addison-Wesley
Professional, 2006)

http://www.swsec.com/

44

Security-enhanced SDLC methodologies cont’d

CMU SEI’s TSP-Secure

http://www.sei.cmu.edu/tsp/tsp-secure-presentation/tsp-secure.pdf

http://www.veracode.com/Weblog/?p=22

Secure Software Engineering (S2e)

http://model.secure-software-engineering.com/

http://www.asq.org/pub/sqp/past/vol9_issue1/sqpv9i1schneider.pdf

Secure Tropos

http://www.dit.unitn.it/~pgiorgio/papers/IJSEKE06-1.pdf

45

Enhancing the Development Life Cycle
Version 2

Available for download (free online registration required) at

https://www.thedacs.com/techs/enhanced_life_cycles/

“Wikified” version in the works, to be posted on DACS portal in near future

Living document — your comments and suggestions are always welcome!

46

Additional resources

In addition to references throughout this presentation, the following resources
will further clarify the security issues involved in security-enhancement of the
software development life cycle

DHS/US-CERT BuildSecurityIn portal

https://buildsecurityin.us-cert.gov/

Software Assurance Forum for Excellence in Code (SAFECode): “Fundamental
Practices for Secure Software Development: A Guide to the Most Effective Secure
Development Practices in Use Today” (October 2008)

http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf/

Karen Mercedes Goertzel, Theodore Winograd, Thomas McGibbon, et al.: Software
Security Assurance: A State of the Art Report (joint publication of DoD’s IA
Technology Analysis Center [IATAC] and DoD Data and Analysis Center for
Software [DACS], 31 July 2007)

http://iac.dtic.mil/iatac/download/security.pdf

47

Karen Mercedes Goertzel, CISSP
Booz Allen Hamilton

703.698.7454
goertzel_karen@bah.com

	Slide Number 1
	What is secure software?
	Why is the security of software important?
	What influences whether software is secure?
	What constitutes a secure life cycle?
	What constitutes a secure life cycle? cont’d
	What constitutes a secure life cycle? cont’d
	Secure SDLC principles: whole life cycle
	Secure SDLC practices: whole life cycle
	Requirements for secure software
	Security-oriented requirements methodologies
	Security-oriented requirements methodologies cont’d
	Security modeling for requirements capture �(and test case definition)
	Architecture-level protections for software
	Secure design principles and practices
	Additional secure design practices
	Secure design modeling to…
	Secure coding practices
	Secure coding guidelines
	Secure coding guidelines cont’d
	Secure assembly/integration
	Acquired software: security challenges
	Acquired software: security challenges cont’d
	Evaluating software security before acquisition
	Evaluating security before acquisition cont’d
	Evaluating security before acquisition cont’d
	Evaluating security before acquisition cont’d �Risk-based security analysis and test techniques
	Evaluating security before acquisition cont’d�Risk-based security analysis and test techniques cont’d
	Trustworthiness of pedigree�What can be discovered about…
	Trustworthiness of pedigree cont’d�What can be discovered about… cont’d
	Trustworthiness of pedigree cont’d�Current state of the art in pedigree info discovery
	Trustworthiness of pedigree cont’d�What does knowledge of pedigree buy you?
	Security benefits of OSS�Greater scrutiny
	Security benefits of OSS cont’d�Greater scrutiny
	Security benefits of OSS cont’d �Does more scrutiny = better security?
	Security benefits of OSS cont’d�Open source code can be modified
	Can vulnerabilities in acquired software be fixed?
	DHS Vulnerability Discovery and Remediation Open Source Hardening Project
	Vulnerability and patch management�OSS-specific concerns
	Software security testing
	Test timing throughout the SDLC
	Secure distribution and deployment
	Secure sustainment
	Security-enhanced SDLC methodologies
	Security-enhanced SDLC methodologies cont’d
	Enhancing the Development Life Cycle�Version 2
	Additional resources
	Slide Number 48

