
0

Karen Mercedes Goertzel, CISSP
Booz Allen Hamilton

Software Assurance Forum
16 October 2008

Insider Threat in the SDLC

1

Are your software’s developers its biggest threat?

2

“…[A] trusted insider can introduce dangerous malicious code that is

designed to degrade or halt critical systems, silently corrupt data…or disclose

classified information…. [T]he software does not need to be written to

overcome specialized protections, but only needs to establish itself on critical

systems. This introduction can occur as a result of compromised software

from a vendor or contractor, from a visitor or contract worker, from a

disaffected or compromised employee or serviceman, or from coalition

personnel with interests not in complete alignment with the U.S.”

– Eugene Spafford, Testimony before the House Armed Services Committee
Subcommittee on Terrorism, Unconventional Threats and Capabilities, 24 July 2003

3

“Corrupt insiders could deliberately introduce vulnerabilities during the

coding of in-house software that is used to manage sensitive military or

intelligence networks. This could allow terrorists or foreign intelligence

agents to exploit the vulnerabilities and surreptitiously enter systems, gain

control, and launch online attacks via and against compromised systems.”

– Australian Institute of Criminology, Future Directions in Technology-Enabled Crime, 2007-2009

4

“The Department of Defense faces a difficult quandary in its software

purchases in applying intelligent risk management, trading off the attractive

economics of COTS and of custom code written off-shore against the risks of

encountering malware that could seriously jeopardize future defense

missions. The current systems designs, assurance methodologies, acquisition

procedures, and knowledge of adversarial capabilities and intentions are

inadequate to the magnitude of the threat.”

– Report of the Defense Science Board Task Force on Mission

Impact of Foreign Influence on DoD Software, September 2007

5

Main insider threats in software organizations

Industrial espionage and intellectual property theft

– Average worth of a high tech firm’s intellectual property ranges from
millions to billions of dollars

– Losses have driven firms out of business

Sabotage and subversion of products and electronic supply chains

– > 33% of cases described in U.S. Secret Service Insider Threat Study
(reports 2004-2008) involved sabotage of systems under development

– Subversion to make the software do something malicious, often in aid of
other objectives (e.g., unauthorised access or data disclosure)

– Sabotage to cause ithe software to fail or execute incorrectly/unreliably

Extortion

– Theft, to “hold the software hostage”

– Planted malware (esp. “time bombs”)

6

“Rogue developer” modes of operation

Intentional insertion of malicious logic (e.g., logic bombs, time bombs, Trojan
horses)

Inserted malware not detected, filtered, quarantined, or eradicated by scanners
and sandboxes effective against delivered malicious code (e.g., viruses, worms,
spyware)

Intentional inclusion of exploitable design flaws crafted to look benign

Intentional inclusion coding errors crafted to look unintentional (for later
exploitation by rogue developer or colluding adversary)

Discovery of unintentional vulnerabilities (for later exploitation by rogue
developer or reported to colluding adversary)

Intentional tampering with test results to remove evidence of inserted malware
or exploitable vulnerabilities (intentional or unintentional)

Extrusion, copying, destruction of source code, other SDLC artifacts

7

Case study: Timothy Lloyd

Chief Network Software Engineer, Omega Engineering

Objective: Sabotage

Means: Malicious code insertion

1. Omega: Manufacturer of high-tech measurement and control instruments
used by NASA, U.S. Navy

2. July 1996: Lloyd dismissed from his job after 11 years

3. Before leaving, planted a logic bomb on Omega server and stole only
backup tape for server's data files

4. Logic bomb triggered three weeks later by engineer switching on a
computer terminal

5. Logic bomb deleted all Omega design documents, source code, production
programs

6. 2002:Lloyd found guilty of sabotage, sentenced to 41 months in prison

8

Case study: Michael Don Skillern

Programmer, American Teachers Life Insurance Company

Objective: Sabotage

Means: Malicious code insertion

1. Bud Skillern, ATL financial consultant, developed very high risk investment
plan that included fraudulent investments

2. Bud's son, Michael Don, was programmer responsible for writing
application to perform calculations for ATL's investment plans

3. Faced with audit by State Board of Insurance Examiners, Bud induces
Michael Don to add “erase feature” in his application that will delete all
traces of Bud's investment plan from ATL's servers

4. 1991: Bud Skillern prosecuted for fraud

9

Case study: Rob Harris

Engineer, Las Vegas Gaming Control Board

Objective: Subversion

Means: Malicious code insertion

1. Planted malicious code into a slot machine testing unit

2. Malicious code downloaded a logic bomb into slot machines when they
were tested

3. Logic bomb, triggered by insertion of a specific sequence of coins,
activated machine's “win mode”

4. Logic bomb remained undetected

5. Harris' win of a $100,000 jackpot raised suspicion. Investigation led to his
prosecution

10

Case study: Liaosheng “Andrew” Wang
Programmer, Ellery Systems, Inc.

Objective: Intellectual property theft

Means: Extrusion of source code via the Internet

1. Ellery Systems: software firm developed distributed computing software
for DoD, Intelligence Community, NASA

2. Chinese national Wang transferred the Ellery's entire proprietary source
code base via the Internet to another Chinese national, then quit

3. Chinese collaborator received $550,000 from Chinese government to set
up own software shop in direct competition with Ellery, then forwarded
Ellery’s code to Beijing Machinery in China

• Stolen source code had cost Ellery Systems $915,000-$950,000 to
produce, estimated potential market value of $ tens of billions

4. Ellery went out of business; 25 employees lost their jobs

5. Wang arrested and confessed, but evidence inappropriate for proving wire
fraud, the only relevant law then on the books

• Ellery case led Congress to pass Economic Espionage Act of 1996

11

Case study: Thomas Varlotta

Lead software engineer, FAA

Objective: Extortion

Means: Direct theft + sabotage

1. June 1998: Varlotta, disgruntled due to demotion, reformatted hard drive
of his FAA laptop containing the source code for Automated Flight Data
Processing System's data transmission error correction software

2. Varlotta retained only copy of the source code on one of several hundred
mismarked floppy disks found in his home by federal investigators

3. The backed-up source code was encrypted with a 13-digit key that NASA
estimated would take 400 years to crack

4. Early 1999: In a plea bargain, Varlotta got reduced sentence and lowered
fine in exchange for handing over the encryption key

12

Case study: Jefferey Howard Gibson

Programmer, St. Cloud Hospital

Objective: Denial of service

Means: Sabotage

1. Gibson planted a logic bomb in a computer-based training program he
wrote for St. Cloud hospital employees before quitting his job in June
2006.

2. The logic bomb went off in August 2006, disabling the training program.

3. The hospital undertook an immediate investigation (with cooperation of St.
Cloud Police Department and FBI Cybercrime Task Force), and concluded
the training program had been rendered useless.

4. Gibson plead guilty (January 2008) and was sentenced (March 2008) to
five years' probation, more than $28,000 in restitution damages, and
community service.

13

Case study: Unidentified contractor

Unidentified technology startup

Objective: Intellectual property theft

Means: Extrusion of source code

1. Contractor sacked mid-project, and not paid.

2. On last day of work on project, contractor backed up startup's entire
source code tree through extrusion over VPN

3. Startup's investors estimated loss of $3M due to exposure of intellectual
property

14

Case study: Unnamed Chinese contractor

Seagate Technology

Objective: Subversion, data theft

Means: Malicious code

1. August 2007: Subcontractor installs Trojan horse on several Maxtor Basics
Personal Storage 3200 hard drives developed for Seagate

2. Trojan horse discovered to automatically and surreptitiously upload all
data saved on the Maxtor drive to two different Web sites in Beijing

3. Autumn 2007: Seagate recalls all Maxtor Basics Personal Storage 3200s,
distributes anti-virus software to buyers of all Seagate hard drives

15

Case study: U.S. CIA

Soviet gas pipeline explosion

Objectives: Sabotage, counterespionage

Means: Intentional bug insertion

1. 1982: CIA gets wind of an ongoing Soviet espionage program in which
Russian agents covertly buy or steal sensitive Western technologies.

2. Soviets buy Canadian gas pipeline SCADA system designed for use on
Alaskan pipeline, intending to install it on the Trans-Siberian pipeline.

3. Hoping to bring the integrity of all technology the Soviet spies have
acquired, before the Canadian SCADA is transferred, the CIA tampers with
its software, planting bugs that would elude detection at time of delivery,
but would have catastrophic results when the software was executed.

4. The Soviets install and run their newly-acquired SCADA system.

5. The resulting explosion of the Trans-Siberian Pipeline was reportedly the
largest non-nuclear explosion ever captured by satellite photo.

16

SDLC artifacts subject to tampering, corruption,
or theft

Requirements spec

Architecture and detailed design specs

Source code (new builds, in maintenance, patches)

Binary executables

Firmware

Test plans, oracles, results

Acquisition criteria

Installation and configuration procedures

Administrator and user documentation

Development tools, environments

17

Contributing factors: supply side

Market driven priorities: getting sexy new product to market trumps all other
considerations

– Vendors not motivated to disclose or deal with internal security lapses

– No legal or criminal liability for hiring or outsourcing to developers with
hostile, malicious, or ambiguous affiliations, loyalties, motivations

– Concern over market reputation inhibits reporting of security incidents
(especially insider incidents)

Lack of security and discipline in SDLC processes, environments

– Inadequate security controls, e.g., security reviews and audits, secure
CM/version control

– Individual modifications of artifacts not authoritatively attributable to the
responsible developer

– In large, geographically dispersed projects, impossible to know who all the
developers even are

– Tendency of developers to trust each other, often without basis

18

Contributing factors: adversary side

Attackers are often

– more motivated

– better resourced

– more expert at finding exploitable vulnerabilities

than developers, testers, integrators, and users

19

Who is the SDLC insider?
Relationship to victim

Employee of development
organisation, e.g., Varlotta,
Wang, Skillern, Lloyd, Gibson

Contracted developer or
integrator (increasingly
offshore), e.g., contractor to
startup, Seagate’s Chinese
contractor

Supplier of third-party software
components, development tools

Other affiliation (independent
tester, packager, distributor,
installer), e.g., Harris, CIA

SOURCE: E. Walker, “Software Development Security: A Risk Management
Perspective”, DoD Software Tech News, Vol. 8 No. 2 July 2005

20

Outsourcing, acquisition, and the SDLC insider

Software vendors and end-user organizations increasingly contracting
development, often to less expensive non-U.S. developers

Difficult, if not impossible, to discover where and by whom commercial software
was developed

– OSS software pedigree equally difficult to trace

– Lack of information on suppliers' SDLC processes and controls means
buyer can't really know security risks posed by suppliers' products or
development services

Palamida and Blackduck Software have pedigree discovery tools and services
(in aid of license enforcement)

– Palamida also offers a service for determining software's security

21

“I am convinced that offshore software development is the soft underbelly

of this nation’s future technology infrastructure. True, offshore

development offers CIOs and technology vendors a short-term gain by

lowering costs, but it creates potential for long-term and catastrophic pain

by making it easier for bad guys to get jobs building American software.”

- Gary Beech, “Offshore Costs”, CIO Magazine, March 2003

22

Malicious code: software as a malicious insider

Software autonomy is increasing, e.g., web services, grid services, intelligent
agents, autonomic systems

– No direct human interaction or visibility

– Excellent vehicle for embedding non-detectable malicious logic

– Software becomes a proxy for a malicious developer

The problem grows exponentially in large, complex processing environments

– Many programs from different developers

– Software-software interactions are numerous and unpredictable

– The interaction of two programs rather than a single program's behavior
may be what's malicious (software colluding with other software)

23

“Treating computers as responsible agents may mask the human

authors of the mischief that may result from the use of those

computer systems.”

- Terry Winograd and Fernando Flores, Understanding

Computers and Cognition: A New Foundation for Design

24

Electronic software piracy

“warez” groups recruit software industry insiders
as spies to watch for, copy, and upload new
releases to warez sites

Some software firms make this easy

– Microsoft makes all of its products available
to employees and help desk contractors,
usually well before MSDN and retail release

– Internal CD key or serial number in pre-
release copies indicates piracy

warez groups also suborn low-wage workers at
software and electronic game media packaging
warehouses

25

“Insiders are constant suppliers to the piracy market.”

- Paul Craig and Ron Honick, Software Piracy Exposed

26

Countermeasures to insider threat in the SDLC

Secure version control and configuration management
– Including digital signature or watermarking of for tamper detection

Increased scrutiny of software under development
– Peer reviews, pair programming (Agile), other reviews
– Static and dynamic analysis of source code to locate vulnerabilities,

anomalies in code
Increased scrutiny of custom and acquired binaries, OSS, reused legacy code

– Embedded malcode detection
– Software pedigree analysis
– Reverse engineering of binaries

SDLC process audits
Developer, integrator, and supplier background checks
Quarantined execution of suspicious software: VMs, TPMs, sandboxes

27

Secure software version control and
configuration management

Increases detection of attempts to plant malicious code, tamper with artifacts

– Only authorized users can change things

– Metadata kept for each version of each artifact

– Regular audits to compare newly checked-in version against previous
version, verify only valid changes were made

– Digital signatures for tamper detection

Increases developer accountability through traceability of SDLC activities

Minimizes undesirable changes to SDLC artifacts, incl. security-relevant
changes

– Aids in impact analysis of changes

Secure SCM systems available/emerging

– MKS Integrity

– Oracle Developer Suite 10g Software Configuration Manager

– Sparta, Inc. Secure Protected Development Repository

28

Non-technical security controls

Used now in organisations that deal with national security secrets, e.g., DoD,
Intelligence Community, DOE, etc.

– Clearances for developers (custom software) and integrators

• Concern remains: Adversaries may use social engineering, direct
contact to suborn cleared developers

– Physical control of access to development environment

Acquisition policy and guidelines

– Examination of software supplier and other relevant software
pedigree/provenance data points: to establish justification for trust

– Enforceable contract/SOW language that penalises suppliers and
contracted developers/integrators for bad software

Security assessment of ALL software prior to acceptance/use, including “home
grown”

29

Emerging countermeasures and relevant research

Anomaly detection, often AI-based, to monitor software process behavior for
indicators of malicious activity

Monitors and constraints for detecting and “defusing” agents and services that
violate security policy or trust policy, or which otherwise misbehave

– Only helpful against malicious software if basis of “trust” is actual
trustworthiness, e.g., verified via software security assurance cases

Source and binary code assessment methods and tools to locate malicious
logic, intentional vulnerabilities

– NSA Code Assessment Methodology Project’s tool-assisted methodology

– CMU SEI CERT Function Extraction for Malicious Code (FX/MC) research

Fault tolerance and other “survivability” enhancements to enable software
systems to continue running dependably in the presence of malicious functions

30

Suggested resources

CMU SEI CERT/CC, Insider Threats in the SDLC
http://www.cert.org/archive/pdf/sepg500.pdf

IATAC, The Insider Threat to Information Systems: A State-of-the-Art Report
To be published shortly (U.S. gov’t/contractors only, U//FOUO)

Stopbadware.org, Software Guidelines for software producers
http://www.stopbadware.org/home/guidelines

NSA, Guidance for Addressing Malicious Code Risk
http://www.nsa.gov/ia/government/iaGuidance.cfm?MenuID=10.3.2

DACS (for DHS), Enhancing the Development Life Cycle to Produce Secure Software
https://www.thedacs.com/techs/enhanced_life_cycles/

IATAC and DACS, Software Security Assurance: A State-of-the-Art Report
http://iac.dtic.mil/iatac/download/security.pdf

NSA National Computer Security Center (NCSC), A Guide to Understanding Configuration
Management in Trusted Systems (“The Amber Book”)

http://csrc.nist.gov/secpubs/rainbow/tg006.txt

Software Assurance Forum for Excellence in Code (SAFECode): “Fundamental Practices for Secure
Software Development: A Guide to the Most Effective Secure Development Practices in Use Today”

http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf/

31

Karen Mercedes Goertzel, CISSP
Booz Allen Hamilton

703.902.6981
goertzel_karen@bah.com

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Main insider threats in software organizations
	“Rogue developer” modes of operation
	Case study: Timothy Lloyd
	Case study: Michael Don Skillern
	Case study: Rob Harris
	Case study: Liaosheng “Andrew” Wang
	Case study: Thomas Varlotta
	Case study: Jefferey Howard Gibson
	Case study: Unidentified contractor
	Case study: Unnamed Chinese contractor
	Case study: U.S. CIA
	SDLC artifacts subject to tampering, corruption, �or theft
	Contributing factors: supply side
	Contributing factors: adversary side
	Who is the SDLC insider? �Relationship to victim
	Outsourcing, acquisition, and the SDLC insider
	Slide Number 22
	Malicious code: software as a malicious insider
	Slide Number 24
	Electronic software piracy
	Slide Number 26
	Countermeasures to insider threat in the SDLC
	Secure software version control and �configuration management
	Non-technical security controls
	Emerging countermeasures and relevant research
	Suggested resources
	Slide Number 32

