
Software Security Engineering
Software Assurance Forum
Tutorial Sessions
October 16, 2008

Sean Barnum
Principal Consultant
Cigital Federal, Inc.

Nancy Mead
Senior Member of the Technical Staff

Software Engineering Institute

© 2008 Cigital Inc. All Rights Reserved. 2Thursday, November 06, 2008

Agenda

What is software security?
Key software security information resources
Why is security a software issue?
What makes software secure?
A quickstart overview of practices and
resources available to integrate security into
the SDLC?

© 2008 Cigital Inc. All Rights Reserved. 3Thursday, November 06, 2008

So What Is Software Security?

Software security is the idea of engineering
software so that it continues to function correctly
under malicious attack

The ability of software to resist, tolerate, and
recover from attack

The goal: Better, vulnerability-free software
that can function more robustly in its
operational production environment

© 2008 Cigital Inc. All Rights Reserved. 4Thursday, November 06, 2008

Key software security information resources

© 2008 Cigital Inc. All Rights Reserved. 5Thursday, November 06, 2008

Build Security In: A Key Resource

Build Security In web site:
https://buildsecurityin.us-cert.gov/

Sponsored by U.S. Department of Homeland Security,
Software Assurance Program

Contains a broad range of information on principles,
sound practices, tools, guidelines, and resources

Contributing authors include Carnegie Mellon, the CERT
Program at the SEI, Cigital, Inc., and other professionals
in the field

© 2008 Cigital Inc. All Rights Reserved. 6Thursday, November 06, 2008

Software Security Engineering: A Key Resource

The book Software Security Engineering: A Guide for
Project Managers
http://www.softwaresecurityengineering.com/

Contains an introduction to software security engineering
and guidance for project managers

Inspired by the Build Security In website

Contributing authors include Julia Allen, Sean Barnum,
Bob Ellison, Gary McGraw, and Nancy Mead

© 2008 Cigital Inc. All Rights Reserved. 7Thursday, November 06, 2008

Why is Security a Software Issue?

© 2008 Cigital Inc. All Rights Reserved. 8Thursday, November 06, 2008

Pop Quiz

What Do These Devices Have in Common?

© 2008 Cigital Inc. All Rights Reserved. 9Thursday, November 06, 2008

The Problem

Organizations increasingly store, process, and
transmit their most sensitive information using
software-intensive systems that are directly
connected to the Internet

Frequency, sophistication and scope of attacks
on software continues to increase at an
alarming rate

More Vulnerable!

More Likely to be Attacked!

© 2008 Cigital Inc. All Rights Reserved. 10Thursday, November 06, 2008

Software Vulnerability Growth
Source: CERT

1090

2437

4129
3784 3780

5690

8064

7236

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2000 2001 2002 2003 2004 2005 2006 2007

© 2008 Cigital Inc. All Rights Reserved. 11Thursday, November 06, 2008

Software that has been developed with security in mind
generally reflects the following properties throughout its
development life cycle:

• Predictable execution

• Trustworthiness

• Conformance

• Attack resistance

• Attack tolerance

• Attack resilience

© 2008 Cigital Inc. All Rights Reserved. 12Thursday, November 06, 2008

Software Security Is A Challenge

The Trinity of Trouble
Connectivity

The Internet is everywhere
and most software is on it

Complexity
Networked, distributed,
mobile code is hard

Extensibility
Systems evolve in
unexpected ways and are
changed on the fly

This simple interface…

…is this complex program

© 2008 Cigital Inc. All Rights Reserved. 13Thursday, November 06, 2008

Software Security Always Has a Cost

Do you want to pay up front by preventing and
minimizing security issues or pay through the
nose later

“…the most critical difference between secure software and
insecure software lies in the nature of the processes and practices
used to specify, design, and develop the software.”

Goertzel, Karen Mercedes, Winograd, Theodore, McKinley, Holly Lynne, & Holley, Patrick. Security in the Software Lifecycle:
Making Software Development Processes—and Software Produced by Them—More Secure, Draft version 1.2. U.S.
Department of Homeland Security,

The return on investment when security analysis and secure
engineering practices are introduced early in the development
cycle ranges from 12 percent to 21 percent, with the highest rate of
return occurring when the analysis is performed during application
design

Berinato, Scott. “Finally, a Real Return on Security Spending.” CIO Magazine (Australia), April 8, 2002.
http://www.cio.com.au/index.php/id;557330171

Soo Hoo, Kevin, Sudbury, Andrew W., & Jaquith, Andrew R. “Tangible ROI Through Secure Software Engineering.” Secure
Business Quarterly 1, 2 (2001). http://www.musecurity.com/assets/files/Tangible%
20ROI%20Secure%20SW%20Engineering.pdf

http://www.cio.com.au/index.php/id;557330171

© 2008 Cigital Inc. All Rights Reserved. 14Thursday, November 06, 2008

The Three Pillars of Software Security

Applied Risk Management
Software Security Touchpoints
Knowledge

© 2008 Cigital Inc. All Rights Reserved. 15Thursday, November 06, 2008

The Risk Management Framework

Business goals
determine risks

Risks drive methods

Methods yield
measurement

Measurement drives
decision support

Decision support
drives fix/rework and
application quality

© 2008 Cigital Inc. All Rights Reserved. 16Thursday, November 06, 2008

Planning for Software Security
Some questions to aid in understanding security risks
to achieving project goals and objectives:

What is the value we must protect?
To sustain this value, which assets must be protected? Why must
they be protected? What happens if they’re not protected?
What potential adverse conditions and consequences must be
prevented and managed? At what cost? How much disruption can we
stand before we take action?
How do we determine and effectively manage residual risk (the risk
remaining after mitigation actions are taken)?
How do we integrate our answers to these questions into an effective,
implementable, enforceable security strategy and plan?

Help you determine how much to invest, where to
invest, and how fast to invest in an effort to mitigate
software security risk.

© 2008 Cigital Inc. All Rights Reserved. 17Thursday, November 06, 2008

What makes software secure?

© 2008 Cigital Inc. All Rights Reserved. 18Thursday, November 06, 2008

Define, Influence, Leverage

To understand what makes software secure,
we must be able to:

Define the properties that characterize
secure software

Identify mechanisms to influence these
properties

Leverage structures and tools for asserting
the presence or absence of these properties

© 2008 Cigital Inc. All Rights Reserved. 19Thursday, November 06, 2008

Core Properties of Secure Software
Confidentiality

The software must ensure that any of its characteristics (including its
relationships with its execution environment and its users), its managed
assets, and/or its content are obscured or hidden from unauthorized entities.

Integrity
The software and its managed assets must be resistant and resilient to
subversion. Subversion is achieved through unauthorized modifications to
the software code, managed assets, configuration, or behavior by authorized
entities, or any modifications by unauthorized entities. Such modifications
may include overwriting, corruption, tampering, destruction, insertion of
unintended (including malicious) logic, or deletion. Integrity must be
preserved both during the software’s development and during its execution.

Availability
The software must be operational and accessible to its intended, authorized
users (humans and processes) whenever it is needed. At the same time, its
functionality and privileges must be inaccessible to unauthorized users
(humans and processes) at all times.

Accountability
All security-relevant actions of the software-as-user must be recorded and
tracked, with attribution of responsibility. This tracking must be possible both
while and after the recorded actions occur.

Non-repudiation
This property pertains to the ability to prevent the software-as-user from
disproving or denying responsibility for actions it has performed. It ensures
that the accountability property cannot be subverted or circumvented.

© 2008 Cigital Inc. All Rights Reserved. 20Thursday, November 06, 2008

Influential Properties of Secure Software
Some properties of software, although they do not directly make
software secure, nevertheless make it possible to characterize how
secure software is

Predictability
Correctness
Dependability
Reliability
Safety

These influential properties are further influenced by the size,
complexity, and traceability of the software. Much of the activity of
secure software engineering focuses on addressing these properties
and thus targets the core security properties themselves.

© 2008 Cigital Inc. All Rights Reserved. 21Thursday, November 06, 2008

Influencing the Security Properties of Software

Balance between engaging in defensive action and
thinking like an attacker

Primary perspective is that of defender
Build in security features to make software resilient to attack
Minimize weaknesses that may lead to vulnerability

Balancing perspective is that of the attacker
Strive to understand the exact nature of the threat that the
software is likely to face so as to focus defensive efforts on
areas of highest risk.

These two perspectives, working in combination, guide
the actions taken to make software more secure.

© 2008 Cigital Inc. All Rights Reserved. 22Thursday, November 06, 2008

The Defensive Perspective

Assuming the defensive perspective involves looking at
the software from the inside out.

Doing so requires the software development team to
perform the following steps:

Address expected issues through the application of
appropriate security architecture and features
Address unexpected issues through the avoidance,
removal, and mitigation of weaknesses that could
lead to security vulnerabilities
Continually strive to improve and strengthen the
attack resistance, tolerance, and resilience of the
software in everything they do

© 2008 Cigital Inc. All Rights Reserved. 23Thursday, November 06, 2008

Addressing the Expected: Security Architecture and
Features
When most people think of making
software secure, they think in terms of
the architecture and functionality of
security features.
Security features and functionality
alone are insufficient to ensure
software security, but they are a
necessary facet to consider.
Security features aim to address
expected security issues with software
Security architecture is the overall
framework that holds these security
functionalities together and provides
the set of interfaces that integrates
them with the broader software
architecture.

© 2008 Cigital Inc. All Rights Reserved. 24Thursday, November 06, 2008

Addressing the Unexpected: Avoiding, Removing,
and Mitigating Weaknesses – Application Defense
Employing practices focused at detecting and
mitigating weaknesses in software systems
after they are deployed
Application defense techniques typically focus
on the following issues:

Establishing a protective boundary around the
application that enforces rules defining valid input or
recognizes and either blocks or filters input that contains
recognized patterns of attack
Constraining the extent and impact of damage that
might result from the exploitation of a vulnerability in the
application
Discovering points of vulnerability in the implemented
application through black-box testing so as to help
developers and administrators identify necessary
countermeasures

Application defense measures should be used
only because they are determined in the design
process to be the best approach to solving a
software security problem, not because they are
the only possible approach after the software is
deployed.

© 2008 Cigital Inc. All Rights Reserved. 25Thursday, November 06, 2008

Addressing the Unexpected: Avoiding, Removing,
and Mitigating Weaknesses – Software Security

“software security” focuses on
preventing weaknesses from entering
the software in the first place or, if that
is unavoidable, at least removing them
as early in the life cycle as possible
and before the software is deployed

Build Security In!!

A wide variety of security-focused
practices are available to software
project managers and their
development teams that can be
seamlessly integrated throughout any
typical software engineering SDLC

© 2008 Cigital Inc. All Rights Reserved. 26Thursday, November 06, 2008

Attack Resistance, Attack Tolerance, and Attack
Resilience

The ability of software to function in the face of attack can be
broken down into three primary characteristics: attack resistance,
attack tolerance, and attack resilience.

Attack resistance is the ability of the software to prevent the capability
of an attacker to execute an attack against it. The most critical of the
three characteristics, it is nevertheless often the most difficult to
achieve, as it involves minimizing exploitable weaknesses at all levels
of abstraction, from architecture through detailed implementation and
deployment. Indeed, sometimes attack resistance is impossible to
fully achieve.
Attack tolerance is the ability of the software to “tolerate” the errors
and failure that result from successful attacks and, in effect, to
continue to operate as if the attacks had not occurred.
Attack resilience is the ability of the software to isolate, contain, and
limit the damage resulting from any failures caused by attack-
triggered faults that the software was unable to resist or tolerate and
to recover as quickly as possible from those failures.

Attack tolerance and attack resilience are often a result of effective
architectural and design decisions rather than implementation
wizardry.

© 2008 Cigital Inc. All Rights Reserved. 27Thursday, November 06, 2008

The Attacker’s Perspective
Assuming the attacker’s perspective involves looking at the
software from the outside in.
It requires thinking like attackers think, and analyzing and
understanding the software the way they would to attack it.
Through better understanding of how the software is likely to be
attacked, the software development team can better harden and
secure it against attack.
Attack Patterns can be used to effectively capture the attacker’s
perspective and share it among all members of the team
Attack Patterns can be leveraged throughout the SDLC such that
decisions and actions are taken with knowledge of how the
software is likely to be attacked

© 2008 Cigital Inc. All Rights Reserved. 28Thursday, November 06, 2008

How to Assert and Specify Desired Security Properties

What is needed is a mechanism for asserting and specifying
desired security properties and using them as a basis for planning,
communicating, and assuring compliance. These assertions and
specifications are typically captured and managed in an artifact
known as an assurance case
Assurance cases are a structured mechanism for capturing
security claims about the software, arguments in justification of
the stated claims and demonstrable evidence that the arguments
are true

Example claim: The software contains no buffer overflows
Example argument: The software was scanned with analysis
tools proven effective at detecting the presence of buffer
overflows is software of this type
Example evidence: The results files from running the tools
showing no buffer overflows

© 2008 Cigital Inc. All Rights Reserved. 29Thursday, November 06, 2008

Parting Thoughts on Secure Software Properties

As you consider each life-cycle phase or
concern and examine each discussed practice
or knowledge resource, it may be beneficial for
you to consider the topics we have just
covered, using the content here as a lens to
understand and assess the practice or
resource for value and applicability in your own
unique context.

© 2008 Cigital Inc. All Rights Reserved. 30Thursday, November 06, 2008

A quickstart overview of practices and
resources available to integrate
security into the SDLC?

31
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

SDLC With Defined Security Touchpoints

McGraw, Gary. Software Security: Building Security In. Boston, MA: Addison-Wesley Professional, 2006.

32
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Microsoft’s Security Development Lifecycle

http://msdn2.microsoft.com/en-us/library/ms995349.aspx

33
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Assess Security Risk Across the SDLC

concept requirements build integration
operation

RFP design testing acceptance

Acquisition Development Implementation

Security Risk Analysis

34
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Six Main Practice Areas

Software security practices that span the SDLC
Requirements engineering practices
Architecture and design practices
Coding and testing practices
Security analysis for system complexity and scale:
mitigations
Governance and management practices

35
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Maturity Indicators

Maturity Level Description
L1 The content provides guidance for how to think about a topic for

which there is no proven or widely accepted approach. The intent of
the description is to raise awareness and aid the reader in thinking
about the problem and candidate solutions. The content may also
describe promising research results that may have been
demonstrated in a constrained setting.

L2 The content describes practices that are in early pilot use and are
demonstrating some successful results.

L3 The content describes practices that are in limited use in industry or
government organizations, perhaps for a particular market sector.

L4 The content describes practices that have been successfully
deployed and are in widespread use. Readers can start using these
practices today with confidence. Experience reports and case
studies are typically available.

36
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Audience Indicators

Audience Code Description
E executive and senior managers
M project and mid-level managers
L technical leaders, engineering managers, first line

managers, and supervisors

37
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Software Security Practices That Span the SDLC 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Properties of
secure software

Core and influential
properties of software that
enable the understanding
and description of its
security characteristics

L4 E, M, L • Executive responsible for
software development

• Project manager
• All software engineering

roles
• Security analyst

38
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Software Security Practices That Span the SDLC 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Attack patterns Formalized capture of
common methods of
attacking software to serve
as guides for improving
software attack resistance
and resilience

L3 M, L • Requirements engineer
• Architect
• Designer
• Developer
• Quality assurance

engineer
• Security analyst

39
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Software Security Practices That Span the SDLC 3

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Assurance cases Structured mechanism for
capturing, communicating,
and validating desired or
attained levels of software
security assurance in terms
of the properties of secure
software

L2 M, L • Project manager
• Quality assurance

engineer
• Security analyst
• Acquisition manager
• Software supplier

40
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Requirements Engineering Practices 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Standard security
requirements
engineering
process

Establish a defined process
for identifying and
documenting security
requirements, such as
SQUARE

L3 E, M, L • Project manager

Security risk
assessment

Perform a risk assessment
aimed at security exposures,
either as part of a project risk
assessment or as a stand-
alone activity

L3 for
security;
L4 for
projects in
general

M, L • Project manager
• Lead requirements

engineer

Threat
identification

Use techniques such as
misuse/abuse cases, threat
modeling, attack patterns, or
attack trees to identify
security threats

L3 L • Lead requirements
engineer

• Security analyst

41
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Requirements Engineering Practices 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Security
requirements
elicitation

Conduct a security
requirements elicitation
activity to identify potential
security requirements

L2 L • Lead requirements
engineer

• Stakeholders

Security
requirements
categorization and
prioritization

Categorize and prioritize
security requirements to
separate true require-ments
from architectural
recommendations and to
optimize cost–benefit
considerations

L2 L • Lead requirements
engineer

• Stakeholders

Security
requirements
inspection

Inspect security require-
ments in conjunction with
other requirements to ensure
they are correct and
complete

L2 for
security;
L4 for
inspect-
ions in
general

L • Lead requirements
engineer

42
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Architecture and Design Practices 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Security principles High-level
perspectives/practices to
provide prescriptive
guidance for architecture and
design

L3 M, L • Architect
• Designer
• Security analyst

Attack patterns Formalized capture of
common methods of
attacking software to serve
as guides for improving the
attack resistance and
resilience of the software
architecture

L3 M, L • Requirements
engineer

• Architect
• Designer
• Developer
• Quality assurance

engineer
• Security analyst

43
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Architecture and Design Practices 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Architectural risk
analysis

Perform a detailed risk
assessment of the software
architecture and design and
its ability to securely support
the requirements of the
software

L3 M, L • Architect
• Designer
• Security analyst

Security guidelines Technology-specific
prescriptive guidance
founded on demonstrated
experience to guide
integrating security concerns
into architecture and design

L3 M, L • Architect
• Designer
• Developer
• Security analyst

44
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Coding and Testing Practices 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Secure coding
practices

Use sound and proven secure
coding practices to aid in
reducing software defects
introduced during
implementation

L4 M, L • Project manager
• Security analyst
• Developer

Source code
review for security
vulnerabilities

Perform source code review
using static code analysis
tools, metric analysis, and
manual review to minimize
implementation-level
security bugs

L4 M, L • Project manager
• Security analyst
• Developer

45
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Coding and Testing Practices 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Unique aspects of
software security
testing

Understand the differen-ces
between software security
testing and tradi-tional
software testing, and plan
how best to address these
(including thinking like an
attacker and emphasizing
how to exercise what the
soft-ware should not do)

L3/4 M, L • Project manager
• Security analyst
• Test engineer

Functional test
cases for security

Construct meaningful
functional test cases (using a
range of tech-niques) that
demonstrate the software’s
adherence to its functional
require-ments, including its
security requirements
(positive requirements)

L4 M, L • Project manager
• Security analyst
• Test engineer

46
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Coding and Testing Practices 3

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Risk-based test
cases for security

Develop risk-based test
cases (using, for example,
misuse/abuse cases, attack
patterns, or threat modeling)
that exercise common
mistakes, sus-pected
software weak-nesses, and
mitigations intended to
reduce or eliminate risks to
ensure they cannot be
circum-vented (negative
require-ments)

L3/4 M, L • Project manager
• Security analyst
• Test engineer

47
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Coding and Testing Practices 4

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Test cases using a
range of security
test strategies

Use a complement of testing
strategies including white-
box testing (based on deep
knowledge of the source
code), black-box testing
(focusing on the software’s
externally visible behavior),
and penetration testing
(identifying and targeting
specific vulnerabilities at the
system level)

L4 M, L • Project manager
• Security analyst
• Test engineer

48
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Security Analysis for System Complexity and Scale: Mitigations 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Tackle known
interface
vulnerabilities first

With systems having more
interfaces to less trusted
systems, developers should
concentrate first on known
interface vulnerabilities such
as those in Web services.

L3 M, L • Project manager
• Security analyst
• Developer

49
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Security Analysis for System Complexity and Scale: Mitigations 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Conduct end-to-
end analysis of
cross-system work
processes

With increasing complex-ity,
vulnerability analysis of
individual systems is not
sufficient. The security
analysis of work process-es
that cross multiple systems
has to consider the risks for
those pro-cesses (including
end-to-end analysis) as well
as the risks that each work
process creates for the
systems that support it.
Security analysis has to
consider a wider spectrum of
errors.

L3 M, L • System architect
• Security analyst

50
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Security Analysis for System Complexity and Scale: Mitigations 3

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Attend to
containing and
recovering from
failures

Assume the existence of
discrepancies of some form,
whether in systems,
operations, or users, during
the execution of work
processes, particularly as
usage evolves. Give
increased attention to
containment and recovery
from failures. These should
be considered in the context
of business continuity
analysis.

L4 M, L • System architect
• Software architect
• Security analyst
• Designer

51
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Security Analysis for System Complexity and Scale: Mitigations 4

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Explore failure
analysis and
mitigation to deal
with complexity

The multiplicity of systems
and increasing number of
possible error states arising
from their inter-actions can
overwhelm analysis or
generate too many point
solutions that mitigate
narrowly specified events.
Explore how security could
take advan-tage of a
consolidated failure analysis
and mitigation effort.

L2 M, L • Chief information
officer

• System architect
• Security analyst
• Designer

52
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Security Analysis for System Complexity and Scale: Mitigations 5

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Coordinate
security efforts
across
organizational
groups

It is not unusual to find that
an organization’s
development, operational,
and business groups are
tackling common security
problems with little
coordination or that some
security problems have
fallen through the cracks.
This separation becomes
even more problematic as
the scope and scale of
systems expand. Vulner-
ability analysis and
mitigations should be
integrated across
organization units, users,
technology, systems, and
operations.

L4 E, M, L • Chief information
officer

• Chief information
security officer

• System architect

53
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Governance and Management Practices 1

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Risk-based
definition of
adequate security

Identify ways to determine
what constitutes adequate
security practice based on
risk management,
established levels of risk
tolerance, and risk
assessment

L4 for
security in
general;
L3 for
software
security

E, M, L • Executive responsible
for software
development

• Project manager
• Lead software

engineer
• Lead security analyst

Continuous risk
management
framework

Put a continuous, business-
driven risk management
framework in place and
periodically assess for
acceptable and unacceptable
levels of risk throughout the
SDLC

L4 M, L • Project manager
• Lead software

engineer
• Lead security analyst

54
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Governance and Management Practices 2

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Software security
practices
integrated with
SDLC

Provide recommendations
for inserting security
practices into the SDLC as
part of traditional project
management activities,
including the use of defined
security touchpoints at each
life-cycle phase

L3 M, L • Project manager
• Lead software

engineer
• Lead security analyst

Software security
as a cultural norm

Recognize that being
security aware and
understanding the
importance of addressing
security during software
development needs to be a
cultural norm (beliefs,
behaviors, capabilities,
actions)

L4 for
security in
general;
L3 for
software
security

E, M, L • Executive responsible
for software
development

• Project manager
• Lead software

engineer
• Lead security analyst

55
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Governance and Management Practices 3

Practices in
Recommended
Order

Description
Maturity Audience

Relevant for
These Roles

Characteristics of
software security
at the governance/
management level

Engage leaders to better
appreciate and under-stand
the characteristics and
actions necessary to address
software security as
governance and management
concerns, and the
consequences of not doing
so

L4 for
security in
general;
L3 for
software
security

E, M, L • Executive responsible
for software
development

• Project manager
• Lead software

engineer
• Lead security analyst

56
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Governance and Management Practices 4

Practices in
Recommended
Order Description Maturity Audience

Relevant for
These Roles

Enterprise
software security
framework

Establish a framework and
roadmap for addressing
software security as an
enterprise-wide undertaking,
and identify some of the
pitfalls and barriers to tackle
head on

L3 E, M, L • Executive responsible
for software
development

• Project manager
• Lead software

engineer
• Lead security analyst

Software security
included in
software
development
measurement
process

Determine how to include
security as part of a software
development measurement
process, including suggested
process and product
measures, and implement,
track, and report such
measures

L1 M, L • Project manager
• Lead software

engineer
• Lead security analyst

57
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

Recommendations

Treat software security as a risk management issue
Address software security in all contexts

• Development, outsourcing, acquisition, purchase, with partners, hosting
another party’s product/service

For internally developed software, integrate security
practices into your SDLC
Ensure applications have adequate controls for audit trails,
and review these
Tackle security as early in the life cycle as possible

58
Software Security Engineering
Nancy R. Mead, October 16, 2008
© 2008 Carnegie Mellon University

Thursday, November
06, 2008

For More Information

Software Security Engineering
http://www.softwaresecurityengineering.com/
http://www.amazon.com/Software-Security-
Engineering-Project-Managers/dp/032150917X

Build Security In website
https://buildsecurityin.us-cert.gov/

http://www.softwaresecurityengineering.com/
http://www.amazon.com/Software-Security-Engineering-Project-Managers/dp/032150917X
http://www.amazon.com/Software-Security-Engineering-Project-Managers/dp/032150917X
https://buildsecurityin.us-cert.gov/

Contact Information

Sean Barnum
Principal Consultant
Cigital Federal, Inc.
Email: sbarnum@cigital.com

Nancy R. Mead
Senior Member of the Technical
Staff
Software Engineering Institute
CERT Program
Email: nrm@sei.cmu.edu

mailto:sbarnum@cigital.com
mailto:info@sei.cmu.edu

	Slide Number 1
	Agenda
	So What Is Software Security?
	Slide Number 4
	Build Security In: A Key Resource
	Software Security Engineering: A Key Resource
	Slide Number 7
	Pop Quiz
	The Problem
	Software Vulnerability Growth
	Slide Number 11
	Software Security Is A Challenge
	Software Security Always Has a Cost
	The Three Pillars of Software Security
	The Risk Management Framework
	Planning for Software Security
	Slide Number 17
	Define, Influence, Leverage
	Core Properties of Secure Software
	Influential Properties of Secure Software
	Influencing the Security Properties of Software
	The Defensive Perspective
	Addressing the Expected: Security Architecture and Features
	Addressing the Unexpected: Avoiding, Removing, and Mitigating Weaknesses – Application Defense
	Addressing the Unexpected: Avoiding, Removing, and Mitigating Weaknesses – Software Security
	Attack Resistance, Attack Tolerance, and Attack Resilience
	The Attacker’s Perspective
	How to Assert and Specify Desired Security Properties
	Parting Thoughts on Secure Software Properties
	Slide Number 30
	SDLC With Defined Security Touchpoints
	Microsoft’s Security Development Lifecycle
	Assess Security Risk Across the SDLC
	Six Main Practice Areas
	Maturity Indicators
	Audience Indicators
	Software Security Practices That Span the SDLC 1
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Recommendations
	For More Information
	Contact Information

