Open-source software is computer software whose source code is available under a copyright license that permits users to study, change, and improve the software, and to redistribute it in modified or unmodified form. The table lists questions to consider asking during an open-source software evaluation.

	#
	Question
	Evidence
	Priority

(1-5)
	Score

(1-4)

	Software History and Licencing

	1
	Can the software pedigree be established? What is known of the people and processes that created the software (brief summary response)?
	
	4
	1

	2
	Is the software in question original source or a modified version?
	
	1
	2

	3
	What type of license(s) are available for the open source software? Is it compatible with other software components in use?
	
	5
	3

	4
	Has the software been reviewed to confirm that it does not infringe upon any copyright or patent?
	
	4
	4

	5
	How long has the software source been available?
	
	3
	2

	6
	Is there an active user community providing peer review and actively evolving the software?
	
	1
	1

	7
	Does software have a positive reputation? Are there reviews that recommend it?
	
	1
	1

	Built-in Software Defenses

	8
	Does the software validate (e.g., filter with whitelisting) inputs from untrusted sources before being used?
	
	3
	

	9
	Has the software been designed to execute within a constrained execution environment (e.g., virtual machine, sandbox, chroot jail, single-purpose pseudo-user) and is it designed to isolate and minimize the extent of damage possible by a successful attack?
	
	2
	

	10
	Does the documentation explain how to install, configure, and/or use it securely? Does it identify options that should not normally be used because they create security weaknesses?
	
	3
	

	11
	Where applicable, does the program use run-time infrastructure defenses (such as address space randomization, stack overflow protection, preventing execution from data memory, and taint checking)?
	
	3
	

	Assurance Claims and Evidence

	12
	Has the software been measured/assessed for its resistance to identified relevant attack patterns?
	
	3
	

	13
	Has security testing been performed on the software with posted results?
	
	2
	

	14
	Has the software been evaluated against the Common Criteria, FIPS 140-2, or other formal evaluation process? If the CC, what evaluation assurance level (EAL) was achieved? Are the security target and evaluation report available?
	
	1
	

	15
	Have static source code analysis tools been used to identify weaknesses that could lead to exploitable vulnerabilities in the software? If yes, what tools are used? What classes of weaknesses were covered?
	
	1
	

	16
	Are there current publicly-known vulnerabilities in the software (e.g., an unrepaired CWE entry)?
	
	2
	

	Software Change Management

	17
	Which open-source repository is used?
	
	2
	

	18
	How are patches distributed?
	
	3
	

	19
	Can patches be uninstalled?
	
	2
	

	20
	How are reports of defects, vulnerabilities, and security incidents involving the software reported and resolved? How rapidly have they been resolved in the past?
	
	2
	

	21
	How frequently are major versions of the software released?
	
	1
	

	22
	How is the software provenance verified (e.g. any checksums or signatures)?
	
	2
	

