Government-off-the-shelf (GOTS) software is a term for a software product that is typically developed by the technical staff of the government agency for which it is created. It is sometimes developed by an external entity, but with funding and specification from the agency. GOTS software may be reused by other agencies but should be analyzed to manage the risk of its reuse. The table presents sample questions to ask during a GOTS software evaluation.

	#
	Questions
	Evidence
	Priority

(1-5)
	Score

(1-4)

	Software History and Licensing

	1
	Can the software pedigree be established? What is known of the people and processes that created the software (brief summary response)?
	
	2
	1

	2
	Is there a change management procedure or document that will identify the type and extent of changes conducted on the software throughout its lifecycle?
	
	2
	2

	3
	What assurances are provided that the software does not infringe upon any copyright or patent?
	
	3
	3

	4
	Are licensed software components still valid for the intended use?
	
	4
	4

	5
	Is the level of security where the software was developed the same as where the software will operate?
	
	2
	

	Development Process Management

	6
	What were the processes (e.g., ISO 9000, CMMi), methods, tools (e.g., IDEs, compilers) techniques, etc. used to produce and transform the software (brief summary response)?
	
	2
	

	7
	Was software assurance considered in all phases of development?
	
	1
	

	8
	How is software risk managed?
	
	2
	

	Concept and Planning

	9
	Were security and quality requirements included in the requirements analysis process?
	
	2
	

	10
	If an agile development method was used, how formally are requirements documented?
	
	3
	

	Architecture and Design

	11
	What threat assumptions, if any, were made when software was originally designed? Is the threat model documented and available?
	
	2
	

	12
	Are design documents for the software archived and available?
	
	2
	

	13
	What security design and security architecture documents are available?
	
	1
	

	14
	How are confidentiality, availability, and integrity addressed in the software design?
	
	1
	

	15
	Are software interfaces described in published documentation?
	
	2
	

	Software Development

	16
	What were the languages and non-developmental components used to produce the software (brief summary response)?
	
	2
	

	17
	Were formal coding standards for the application were used during the software development life cycle?
	
	1
	

	18
	Are configuration/change controls in place to prevent unauthorized modifications or additions to source code and related documentation? Do these controls detect and report unexpected modifications/additions to source code? Do they aid in rolling back an affected artifact to a pre-modified version?
	
	3
	

	19
	Does the software’s exception-handling mechanism prevent all faults from leaving the software, its resources, and its data (in memory and on disk) in a vulnerable state? Does the exception-handling mechanism provide more than one option for responding to a fault? If so, can the exception-handling options be configured by the administrator or overridden?
	
	3
	

	20
	Does the available version of the software have undocumented functions disabled, test/debug code removed, and source code comments sanitized?
	
	2
	

	Built-in Software Defenses

	21
	Does the software validate (e.g., filter with white lsting) inputs from untrusted sources before being used?
	
	3
	

	22
	Has the software been designed to execute within a constrained execution environment (e.g., virtual machine, sandbox, chroot jail, single-purpose pseudo-user) and is it designed to isolate and minimize the extent of damage possible by a successful attack?
	
	2
	

	23
	Does the software default to requiring the administrator (or user of a single-user software package) to expressly approve the automatic installation of patches/upgrades, downloading of files, execution of plug-ins or other “helper” applications, and downloading and execution of mobile code?
	
	4
	

	24
	Does the documentation explain how to install, configure, and/or use it securely? Does it identify options that should not normally be used because they create security weaknesses?
	
	3
	

	25
	Where applicable, does the program use run-time infrastructure defenses (such as address space randomization, stack overflow protection, preventing execution from data memory, and taint checking)?
	
	3
	

	26
	How is the threat of reverse engineering of binaries minimized? Are source code obfuscation techniques used?
	
	3
	

	Component Assembly

	27
	Does the software include content produced by suppliers other than the primary developer? If so, who?
	
	2
	

	28
	Is the software regularised to conform to coding or API standards in any way?
	
	2
	

	29
	What are the policies and procedures for verifying the quality and security of non-developmental components used?
	
	2
	

	Testing

	30
	What types of functional tests are/were performed on the software (e.g., spot checking, component-level testing, security testing, integrated testing)?
	
	2
	

	31
	Were misuse test cases included to exercise potential abuse scenarios of the software?
	
	1
	

	32
	What degree of code coverage do the available test cases provide?
	
	2
	

	33
	Are regression test scripts available?
	
	3
	

	Installation

	34
	Are installation instructions available?
	
	4
	

	35
	Are instructions available to securely configure the application?
	
	3
	

	36
	Is a validation test suite or diagnostic available to validate that the application software is operating correctly and in a secure configuration following installation?
	
	3
	

	Assurance Claims and Evidence

	37
	Has the software been measured/assessed for its resistance to identified relevant attack patterns?
	
	3
	

	38
	Were static software security analysis tools used to identify the weaknesses that can lead to exploitable vulnerabilities in the software? If yes, what tools were used? What classes of weaknesses were covered?
	
	1
	

	39
	Has the software undergone any penetration testing? When? By whom? Are the test reports available under a nondisclosure agreement? How have the findings been mitigated?
	
	1
	

	40
	Are there current publicly-known vulnerabilities in the software (e.g., an unrepaired CWE entry)?
	
	2
	

	41
	Has the software been certified and accredited? When? By whom?
	
	2
	

	Support

	42
	Is there a Support Lifecycle Policy for the software in question? Does it outline and establish a consistent and predictable support timeline?
	
	3
	

	43
	How are patches and/or Service Packs distributed?
	
	3
	

	44
	How are support issues resolved?
	
	3
	

	Software Change Management

	45
	How extensively are patches and Service Packs tested before they are released?
	
	2
	

	46
	Can patches and Service Packs be uninstalled? Are the procedures for uninstalling a patch or Service Pack automated or manual?
	
	2
	

	47
	Will configuration changes (if needed for the installation to be completed) be reset to what was there before the patch was applied in cases where the change was not made explicitly to close a vulnerability?
	
	2
	

	48
	How are reports of defects, vulnerabilities, and security incidents involving the software reported and resolved? How rapidly have they been resolved in the past?
	
	2
	

	49
	What are the policies and practices for reviewing design and architecture security impacts in relation to deploying patches?
	
	
	

	50
	What policies and processes were used to verify that software components do not contain unintended or , “dead” code? What tools were used?
	
	1
	

	51
	How can the integrity of update/patches be verified to ensure that they are correct and unaltered (e.g., comparisons of cryptographic hashes)?
	
	2
	

	52
	How is the software provenance verified (e.g. any checksums or signatures)?
	
	2
	

