
Software Engineering

S oftware engineers and their customers continu-
ously face a complex and frustrating decision:
given a fixed budget, which combination of
vulnerability mitigation actions produces opti-

mal system security? In a world without budgetary or
temporal constraints, engineers could invest in whatever
tools or training they deemed necessary to safeguard ap-
plications and networks. Or they could spend arbitrary
amounts of time and money patching existing code and
take painstaking precaution in writing new software to
ensure its security. Of course, the economic reality is that
software engineers are pushed to get their product to
market as fast as possible, and security is often a distant
priority in the face of budgetary constraints. However,
fixing any remaining security vulnerabilities postproduc-
tion can be both costly and wasteful.

In this article, we describe a novel methodology for
quantitatively optimizing the blend of architectural and
policy recommendations that engineers can apply to their
products to maximize security under a fixed budget. The
results of our optimization are sometimes surprising and
even counterintuitive: bigger budgets don’t always pro-
duce greater security, and the optimal combination of
corrective actions changes nonlinearly with increasing ex-
penditures. These findings suggest that some form of for-
mal decision support could augment traditional methods.

A nontrivial problem
The problem we address here is nontrivial for several rea-
sons. The first challenge is the ability to obtain plausible,
reliable, and quantitative estimates of the cost of fixing se-
curity vulnerabilities and the corresponding benefits from
averting losses due to a breach. A large body of academic

literature extracts
such subjective judg-
ments, particularly for risky outcomes, so we used this
knowledge base to inform our study.1–3 The innovation
here isn’t how to elicit parameter values, but rather what
methods move us from those judgments to an action plan.

The second challenge in prioritizing such corrective
actions is their many-to-many relationship with the secu-
rity problems they solve. If there were a one-to-one rela-
tionship between action and vulnerability, we would
implement the mitigation action that solved the most
threatening problem first and take the remaining actions
in a decreasing cost-effectiveness order until either time
or resource limitations prohibited further steps.

However, such a simple ordering isn’t possible with a
many-to-many relationship. In fact, the decision of
which blend of mitigation steps to pursue is combinator-
ial, with the number of combinations growing exponen-
tially with the number of potential actions. This means
that considering every possible combination is prohibi-
tively time-consuming. Fortunately, we can couch the
problem as a mathematical optimization problem (specif-
ically, an integer program, or IP4) and solve at least to a
very good optimality approximation with a range of soft-
ware packages, including spreadsheet programs such as
Microsoft Excel.5,6 The details of this formulation appear
in a separate technical report.7

At Carnegie Mellon University’s Software Engineer-
ing Institute (SEI), we’ve been able to experiment with
this new methodology in a case study of the Security
Quality Requirements Engineering (Square) methodol-
ogy.7–9 The Square case study client (referred to here as
“Acme Company” to maintain consistency with other

Optimizing Investments in
Security Countermeasures
A Practical Tool for Fixed Budgets

24 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY

As a software engineer or client, how much of your budget

should you spend on software security mitigation for the

applications and networks on which you depend? The

authors introduce a novel way to optimize a combination of

security countermeasures under fixed resources.

JONATHAN

CAULKINS

Carnegie
Mellon
University

ERIC D. HOUGH

Space and
Naval
Warfare
Systems
Center San
Diego

NANCY R.
MEAD

Software
Engineering
Institute

HASSAN

OSMAN

Ernst &
Young

Software Engineering

reports on the project) has a staff of approximately 1,000
employees and provides technical and managerial ser-
vices to large organizations. Mitigating security concerns
in their products and services is a central component of
Acme’s business mission.

Misuse cases
The Square process is a comprehensive approach to elic-
iting, categorizing, and prioritizing the security require-
ments of a system under design. Here, we focus on a
subset of this process, in which we identify threats to the
client’s system with misuse cases and quantify their im-
pact with standard risk-assessment methodologies. We
then apply our IP optimization methodology in terms of
choosing the optimal combination of actions that engi-
neers can take in securing the system against these misuse
cases under a fixed budget.

Misuse (or abuse) cases—as explained by Paco Hope,
Gary McGraw, and Annie Antón—are scenarios that de-
scribe how an attacker or malicious user would attempt
to abuse a system.10 In studying them, software develop-
ers can gain insight about how to design systems to coun-
teract prospective attacks. Successfully preventing a
misuse case requires implementing a combination of ar-
chitectural recommendations (ARs) and policy recom-
mendations (PRs). If we had a misuse case in which a user
gains access to a system using spoofed identities, for ex-
ample, an AR would be to set up firewalls between
servers and workstations, and a PR would be to patch the
firewall software weekly.

Obviously, not all misuse cases are this simple, and pre-
venting a more complex one could require the implemen-
tation of multiple ARs and PRs. Alternatively, a single AR
or PR could be part of the solution for multiple misuse
cases: in the previous example, the suggested PR could also
mitigate the effect of another misuse case (“main server in-
fected with a virus or worm”). Hence, we can have a
many-to-many relationship among misuse cases and rec-
ommendations, both policy and architectural.

The costs of mitigation
To prioritize recommendation implementation, the soft-
ware engineer or client must assign a cost to each one—
say, in dollars per year. To implement an AR, for instance,
the costs might include initial hardware or software ex-
penses and their corresponding implementation and
maintenance requirements.

In the previous firewall example, the AR costs include
the physical firewall unit’s price as a fixed hardware cost in
addition to the number of hours an employee is expected
to spend setting up and monitoring the firewall (multi-
plied by that employee’s hourly rate). The number of per-
son-hours spent (again, multiplied by the hourly rate)
learning how to patch the firewall and the expense of
patching thereafter are included in the PR costs.

We can sum all these costs to reflect the total yearly
costs per recommendation, but this sum is misleading be-
cause of the many-to-many relationship between recom-
mendations and misuse cases: the more misuses cases a
recommendation addresses, the lower its marginal cost of
implementation becomes. Our optimization methodol-
ogy reduces the complication involved in deciding which
misuse cases to address when budgetary restrictions pre-
clude addressing them all. In our sample application,
Acme decided that misuse case resolution was a binary
variable, meaning that each misuse case would either be
completely resolved or completely unresolved. This im-
plied that for Acme, even if it implemented four out of
five of a misuse case’s recommendations, the vulnerability
would still be considered unresolved. We can estimate an
expected total yearly loss for these unresolved misuse cases
by calculating them on a per-incident basis and multiply-
ing by an estimated yearly frequency. This estimation also
considers other opportunity costs, such as loss of reputa-
tion. Denis Verdon and Gary McGraw highlighted several
common methods for calculating such losses.1

In the Acme case study, the team discovered 12 misuse
cases in their system, an average of roughly 10 recom-
mendations per misuse case, and a single budget con-
straint (dollar cost), but our optimization approach
readily extends to handle additional constraint types
(such as time or the availability of staff with particular
skills). The team then developed a yearly cost per recom-
mendation, yearly cost per resolution of misuse cases, and
yearly cost per unresolved misuse case. Acme wasn’t sure
how much money it could budget for threat mitigation,
so we solved the optimization model repeatedly for dif-
ferent budget levels between US$5,000 and $120,000.
However, for any given budget, we could solve the
model to optimality with Excel’s built-in “Solver” in a
second or two.

Results
Our results were instructive in several dimensions. Figure
1 shows optimal spending on remediation as a function of
budget, indicating that it’s never optimal for Acme to

spend between $10,000 and $40,000 on security coun-
termeasures. The number of misuse cases resolved
doesn’t improve with more spending in this range be-
cause Acme wouldn’t consider a misuse case to be re-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 25

To prioritize recommendation imple-

mentation, the software engineer or

client must assign a cost to each

one—say, in dollars per year.

Software Engineering

solved unless it implemented every recommendation.
With very limited resources, Acme could use the first
$10,000 to address the low-hanging fruit, such as pre-
venting brute-force password cracking attacks. Not until
the budget reaches $40,000 does it make sense to address
other more difficult misuse cases, such as buffer over-
flows, accidental deletion of configuration files, or SQL
injection attacks.

Another interesting result was that AR or PR imple-
mentation wasn’t a monotonic function of budget size—
that is, recommendations didn’t have a simple decision
rule (“if the budget available exceeds X dollars, then im-
plement additional recommendation Y”). The optimal
strategy called for implementing recommendations to
prevent “unauthorized access to the main server” if the
budget were between $60,000 and $70,000 or greater
than $100,000, but not if it were between $70,000 and
$100,000. In retrospect, the reasoning is clear: when the
budget is less than $60,000, it isn’t possible to implement
all the required ARs and PRs necessary to address a vul-
nerability. If the budget grows beyond $70,000, then it’s
possible to address an even more pressing misuse case,
such as input validation attacks but not while simultane-

ously addressing “unauthorized access to the main
server” unless the budget exceeds $100,000. Although
this is sensible in retrospect, these strong interaction ef-
fects are hard to anticipate ex ante or to work out intu-
itively. Figure 2 shows exactly how the number of
resolved misuse cases grows nonlinearly with budget size.

T he method of resolving misuse cases by implement-
ing discrete recommendations makes it easy to un-

derstand which specific actions pay dividends by
addressing multiple misuse cases. Without this approach,
such instances of “killing two birds with one stone”
would tend to be overlooked, leading to misinformed
judgments about the actual difficulty of addressing vari-
ous combinations of misuse cases.

Naturally, this optimization approach has its limita-
tions. First, as with any quantitative analysis, the results
are only as good as parameter accuracy. Although we
could calculate the cost of ARs and PRs reasonably pre-
cisely, misuse case losses tend to be expert judgments,
making sensitivity analysis important. The software engi-
neering discipline as a whole still needs formal tools to as-
sess the accuracy of human estimations: even in so-called
“hard” sciences, experts make consistent, serious errors
in judgment and tend to be optimistic about their level of
accuracy.11 This weakness could be mitigated by having
multiple risk experts perform their analyses indepen-
dently. Because human judgment is prone to fallibility,
we can leverage to some extent the wisdom of crowds
when estimating the costs of misuse cases.12 The second
limitation of this approach is the fact that outlining the
entire set of misuse cases isn’t trivial. Given the relatively
small size of Acme’s application, this wasn’t a problem for
our case study, but larger applications can have many ways
in which a system could be infiltrated; there must be an
effective method to select and prioritize a set of them. 1,13

Note that none of these limitations is specific to our
optimization-based approach—they’re equally pertinent
for any quantitative approach to making decisions about
investments in security countermeasures. Furthermore,
the application of this methodology to a medium-sized
company such as Acme proved to be quite fruitful, so we
believe our methodology holds promise as a tool for fur-
ther applications deployed in such environments. The
Square method has undergone additional case studies,
tool development, and development of educational ma-
terials. As we gain more experience with it, we expect
additional refinement to take place.

References
1. D. Verdon and G. McGraw, “Risk Analysis in Software

Design,” IEEE Security & Privacy, vol. 2, no. 4, 2004, pp.
79–84.

2. D. Kahneman and A. Tversky, eds., Choices, Values and

26 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2007

Figure 1. Optimal spending. For Acme, spending between $10,000 and

$40,000 to resolve misuse cases would never be optimal.

0

20

40

60

80

100

120

Budget ($ thousands)

C
os

t
of

 r
es

ol
ve

d
m

is
us

e
ca

se
s

($
 t

ho
us

an
d

s)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105 1E
+11

Figure 2. Budget vs. security. The number of resolved misuse cases grows

nonlinearly with budget size.

0

2

4

6

8

10

12

M
is

us
e

ca
se

s

Budget ($ thousands)

50 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105 1E
+11

Software Engineering

Frames, Cambridge Univ. Press, 2000.
3. D. Kahneman, P. Slovic, and A. Tversky, eds., Judgment

under Uncertainty: Heuristics and Biases, Cambridge Univ.
Press, 1982.

4. L.A. Wolsey, Integer Programming, Wiley & Sons, 1998.
5. C. Albright, “Premium Solver Platform for Excel (Soft-

ware Review),” OR/MS Today, vol. 28 no. 3, 2001, pp.
58–63.

6. D. Fylstra et al., “Design and Use of the Microsoft Excel
Solver,” Interfaces, vol. 28, no. 5, 1998, pp. 29–55.

7. H. Osman et al., SQUARE Methodology: Case Study on
Asset Management System, tech. report CMU/SEI-2004-
SR-015, Software Eng. Inst., Carnegie Mellon Univ.,
2004.

8. N.R. Mead, E. Hough, and T. Stehney II, Security Qual-
ity Requirements Engineering, tech. report CMU/SEI-
2005-TR-009, Software Eng. Inst., Carnegie Mellon
Univ., 2005; www.sei.cmu.edu/publications/docu-
ments/05.reports/05tr009.html.

9. N.R. Mead, “Identifying Security Requirements Using
the Security Quality Requirements Engineering
(SQUARE) Method,” Integrating Security and Software
Engineering: Advances and Future Visions, H. Mouratidis
and P. Giorgini, eds., Idea Group, 2006, pp. 44–69.

10. P. Hope, G. McGraw, and A.I. Antón, “Misuse and
Abuse Cases: Getting Past the Positive,” IEEE Security &
Privacy, vol. 2, no. 3, 2004, pp. 90–92.

11. Statistical Software Engineering Commission on Physical Sci-
ences, Mathematics, and Applications, Nat’l Academies Press,
1996, p. 39.

12. J. Surowiecki, The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes Busi-
ness, Economies, Societies and Nations, Little, Brown, 2004.

13. J. Whittle and I.H. Kruger, “A Methodology for Sce-
nario-Based Requirements Capture,” Proc. 3rd Int’l Work-
shop on Scenarios and State Machines: Models, Algorithms,
and Tools (SCESM 04), 2004, pp. 2–7.

Jonathan P. Caulkins is Professor of Operations Research and
Public Policy at Carnegie Mellon University’s Qatar campus in
Doha and its Heinz School of Public Policy. His research inter-
ests include mathematical modeling and systems analysis with
a particular focus on social policy problems pertaining to drugs,
crime, violence, and prevention. Caulkins has a PhD in opera-
tions research from MIT. Contact him at caulkins@cmu.edu.

Eric Hough is a software engineer at the Space and Naval War-
fare Systems Center San Diego, where he develops tools to
improve network security for the US Navy. Hough has an MS in
information security technology and management from Carnegie
Mellon University. Contact him at hough@spawar.navy.mil.

Nancy R. Mead is a senior member of the technical staff in the
Networked Systems Survivability Program at the Software Engi-
neering Institute (SEI). Her research interests include information
security, software requirements engineering, and software archi-
tectures. Mead has a PhD in mathematics from the Polytechnic
Institute of New York. She is a fellow of the IEEE and the IEEE
Computer Society and a member of the ACM. Contact her at

nrm@sei.cmu.edu.

Hassan Osman is an information security advisor with Ernst &
Young’s Security & Technology Solutions practice, where he
helps clients assess, evaluate, and implement solutions to pro-
tect their IT infrastructure and business processes. He recently
wrote a book entitled Securing Your Information in an Insecure
World (BookSurge Publishing, 2007). He has an MS in infor-
mation security policy and management from Carnegie Mellon
University. Contact him at hassan.osman@ey.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

