
Building Security In
Editor: Gary McGraw, gem@cigital.com

might be one of the many that have
realized the “secure the perimeter”
approach doesn’t stem the tide of in-
cidents because the software it’s build-
ing and buying doesn’t resist attack.

Painfully aware of the problem,
savvy organizations have grappled
with how to build security into their
software applications for a few years
now. Even the best efforts have met
considerable resistance because the
problem is mostly organizational
and cultural, not technical—
although plenty of technical hurdles
exist as well.

Unfortunately, software security
might be new to your organization’s
appointed “application security”
czar—if one even exists. Even know-
ing where to start often proves a seri-
ous challenge. The first step toward
establishing an enterprise-wide soft-
ware security initiative is to assess the
organization’s current software de-
velopment and security strengths and
weaknesses. Yes, this applies to soft-
ware built in-house, outsourced,
purchased off-the-shelf, or inte-
grated as part of a vendor “solution.”

As an exercise, ask yourself the first
question in my imaginary software
security assessment: “How much
software does my organization pur-
chase compared to how much it
builds in-house?” If the overwhelm-
ing majority of deployed software is

outsourced, software security looks a
lot more like outsourced assurance
than it does building security in! Most
organizations do quite a bit of both,
so we’ll have to solve both problems.

Common pitfalls
Whether tackling the problem for-
mally or informally, top-down or
bottom-up, organizations hit the
same roadblocks as they prepare to
build and buy more secure applica-
tions. How each organization over-
comes these roadblocks depends a
great deal on its strengths and weak-
nesses: no one-size-fits-all approach
exists. Just knowing some of the
landmines might help you avoid
them, though. Let’s look at some of
the most common ones.

Lack of software
security goals, vision
It bears repeating: the first hurdle for
software security is cultural. It’s
about how software resists attack,
not how well you protect the envi-
ronment in which the software is de-
ployed. Organizations are beginning
to absorb this concept, but they
don’t know exactly what to do about
it. Their first reaction is usually to
throw money and one of their go-
getters at it. He or she might make
some progress initially by defining
some application security guidelines

or even buying a static analysis
tool—essentially, picking the low-
hanging fruit.

Although it sounds compelling,
avoid charging off to win this easy
battle. If your organization is large,
you don’t need to be reminded of
what role politics plays. At the direc-
tor level, headcount, budget, and
timelines are the system of currency,
and demanding that development
teams adhere to guidelines requiring
development they haven’t budgeted
for, or imposing a tool that spits out
vulnerabilities for them to fix prior
to release, can quickly send software
security efforts into political deficit.

To use a war analogy, each of the
chief information officer’s majors
must understand their role in software
security prior to going into battle. To
win, each major will have to take on
at least a small amount of responsibil-
ity for software security, but the most
crucial aspect of success is for each of
them to know his or her responsibil-
ity and when to collaborate.

Put simply, without executive
sponsorship, a unified understand-
ing of roles, responsibilities, and a vi-
sion for software security, the effort
will sink quickly into political strug-
gle or inaction.

Creating a new group
Some organizations respond to the
software security problem by creat-
ing a group to address it. Headcount
and attention are necessary, but it’s a
mistake to place this headcount on
an island by itself. It’s an even bigger
mistake to use network security folks
to create a software security capabil-
ity—they just don’t understand soft-
ware well enough.

Software security resources must

JOHN STEVEN

Cigital

M
ost organizations no longer take for granted

that their deployed applications are secure.

But even after conducting penetration tests,

network and hosting security personnel

spend considerable time chasing incidents. Your organization

Adopting an Enterprise
Software Security Framework

84 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/06/$20.00 © 2006 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

be placed into development teams
and seen as advocates for security, in-
tegration, and overcoming develop-
ment roadblocks.

Software security best-
practices nonexistent
Security analysts won’t be much more
effective than penetration testing tools
if they don’t know what to look for
when they analyze software architec-
ture and code. Likewise, levying
unpublished security demands on de-
velopers is nonproductive and breeds
an us-versus-them conflict between
developers and security.

Instead, build technology-
specific prescriptive guidance for de-
velopers. If the guidance doesn’t
explain exactly what to do and how
to do it, it’s not specific enough.
Specific guidance removes the
guesswork from the developer’s
mind and solves the problem of con-
sistency between security analysts.

Software risk doesn’t
support decision-making
Although most organizations view
critical security risks as having the
utmost importance, project man-
agers constantly struggle to apply
risk-management techniques. The
first reason for this is a lack of visibil-
ity. Even if a technical vulnerability is
identified, analysts often don’t fully
understand its probability and im-
pact. Rarely does an organization
use a risk-management framework
to consistently calculate a risk’s im-
pact at the project-management or
portfolio level.

Establish a common risk frame-
work as part of governance efforts
to gain business owners’ under-
standing and respect if you want the
organization to choose security risk
over time-to-market or if you need
additional capital when making re-
lease decisions.

Tools as the answer
Companies often believe that an au-
thentication, session management,
data encryption, or similar product

protects their software completely.
Although they serve as lynchpins of
an organization’s software security
proposition, most organizations have
a weak adoption of these tools at best.
What’s worse is that these technolo-
gies are often deployed without
being properly vetted. Not only do
the products themselves possess vul-
nerabilities, but the organization’s
development teams weren’t con-
sulted to help with deployment,
making integration difficult if not in-
feasible. Even if adoption of these
tools were complete, they would not
in and of themselves assure that an
application could resist attack. Too
often, architecture review is reduced
to a checklist: “Did you integrate
with our single sign-on and directory
service tools?” “Yes? Then you’re
done.” It’s no wonder these applica-
tions still possess exploitable architec-
tural flaws.

Penetration testing and static
analysis tools aren’t panaceas either.
These tools help people find vulner-
abilities, but there’s a lot more to
building security into software ap-
plications than running these tools,
as we’ll see.

Framing the solution
An Enterprise Software Security
Framework (ESSF) is a new way of
thinking about software security more
completely at the enterprise level, tar-
geting the problem directly without
demands for massive headcount, role
changes, or turning an IT shop upside
down to prioritize security ahead of
supporting the business that funds it.
ESSFs align the necessary people,
know-how, technologies, and soft-
ware development activities to

achieve more secure software. Be-
cause every organization possesses dif-

ferent strengths and weaknesses, and,
most important, faces different risks as
a result of using software, ESSFs will
differ across organizations. Although I
can’t say what elements the optimal
ESSF in your organization will look
like, I can present properties that all
good ESSFs will possess.

“Who, what,
when” structure
To align each group’s role in achiev-
ing secure software, an organization’s
ESSF should possess a “who, what,
when” structure—that is, the frame-
work should describe what activities
each role is responsible for and at
what point the activity should be
conducted. Because building secu-
rity into applications requires the
collaboration of a wide variety of
disciplines, the framework should
include roles beyond the security an-
alysts and application development
teams. Figure 1 shows column head-
ings under which an ESSF might list
each role’s responsibility.

You might not recognize some of
the group names in the figure. One
organization’s infrastructure group is
another’s shared services or architec-
ture office, or something else en-
tirely, and that’s okay. Another
subtlety involves reporting relation-
ships—although they’re important,
don’t get wound up in them when
defining an ESSF. Focus on who
needs to do what.

Figure 2 shows a partial enumera-
tion of activities for which a particu-
lar role is responsible. Each group
further defines how they accomplish
each of their framework activities.
For example, the business owner of
development might decide to build a

handbook to walk developers step-
wise through the process of pro-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 85

Patience: it will take at least three to five years

to create a working, evolving software security

machine.

Building Security In

gramming securely. It’s just as likely
this wouldn’t get traction, though, so
the ESSF could mandate training for
developers before they’re unleashed
into the development organization.
It’s unclear what activities will com-
prise your organization’s ESSF, but
here are a few gotchas to avoid:

• Don’t place technologies or prod-
ucts, such as “single sign-on,” in
the framework’s boxes.

• Don’t demand teams to begin
conducting every activity on day
one. Slowly introduce the simplest
activities first, then iterate.

• Avoid activities that produce un-
verifiable artifacts or results, such
as “collaborate with security here.”

Remember, the framework’s pri-
mary goal is to align people and their
responsibilities, so keep the visuals
about who does what activities when.

Focus on resisting
attack, not including
security features
Security is an emergent property of

an application, not just an amalgam
of security features. In an attempt to
simplify the problem and make ini-
tial strides, organizations often get
stuck in a feature-centric mode:
they tell themselves, “If we just en-
crypt our HTTP connections and
authenticate users, we’re doing
enough.” Thinking about how to
leverage the security features of
toolkits, languages, and application
servers within an application is good
and necessary—it just isn’t suffi-
cient. To be successful, the philoso-
phy of “resisting attack” must
pervade each and every ESSF activ-
ity. Avoid the feature trap by estab-
lishing a goal of improving attack
resistance in each activity from its
inception. Some guides:

• construct misuse/abuse cases,
• model the threats each application

faces,
• assess applications against a threat

model, misuse/abuse cases,
• train using vulnerability case studies,
• define standards based on risk,

vulnerabilities,

• avoid relying on security feature
checklists, and

• avoid relying solely on API-guide
security standards and training.

Like adopting framework activi-
ties, attempting to adhere to each of
these guides on day one can be too
onerous. Build on your organiza-
tion’s current strengths, infusing this
guidance opportunistically.

Possess five competencies
Regardless of how an organization
operates, every good ESSF addresses
five pursuits in one form or another.
Organizations should iteratively
raise their competencies in each of
these pursuits gradually as they adopt
their ESSF.

Enterprise software security
framework. The ESSF defines an
organization’s approach to software
security and describes roles, respon-
sibilities, activities, deliverables, and
measurement criteria. It also in-
cludes a communication plan for en-
terprise-wide roll out.

86 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2006

Figure 1. Role responsibilities: who. The red boxes represent each role’s first steps.

A
n

al
yz

e
&

 s
tr

at
eg

iz
e

A
ss

es
s

&
 A

lig
n

Executive level
Pro

g
ram

s
(ap

p
licatio

n
 p

o
rtfo

lio
s)

Define governance
framework

Implement risk
management

Aggregate
portfolio risk

Plan security strategy

Create partner/
collaboration agreements

Define outsource
controls

Create security
roadmap

Security steering committee

Business CISO CIO

Analysis Training Security Policy Infrastructure QAApplication
development

Building Security In

Enterprise software and data ar-
chitectures are essential anchors of
the goal-state an ESSF defines. Def-
inition of and migration toward a se-
cure enterprise architecture is thus
part of the framework competency.

Knowledge management, training.
An organized collection of security
knowledge is likely to include pol-
icy, standards, design and attack
patterns, threat models, code sam-
ples, and eventually a reference ar-
chitecture and secure development
framework.

Another element of this compe-
tency is the development and deliv-
ery of a training curriculum. Topics
include security knowledge as well
as help for conducting assurance ac-
tivities. This pursuit also includes
new courseware, along with retro-
fitting of existing courseware to soft-
ware security concepts.

Security touchpoints. The defi-
nition of tasks and activities that
augment existing development
processes (formally or informally)
help developers build security into
any custom software development
process, as well as in-place out-
source assurance and commercial-
off-the-shelf validation processes.
This competency defines how to
assure software.

Assurance. The execution of secu-
rity touchpoint activities provides
assurance—conducting a software
architectural risk assessment, for ex-
ample, validates that security re-
quirements were translated into
aspects of the software’s design and
that the design resists attack. Assur-
ance activities rely heavily on the
knowledge and training compe-
tency to define what to look for.

Tool adoption is likely to be part
of this pursuit in the short-to-
medium term. It will involve the
purchase, customization, and roll-
out of static analysis tools as well as
dynamic analysis aides. Your or-
ganization might have already

adopted a penetration-testing pro-
duct, for instance.

Governance. In the context of an
ESSF, governance is competency in
measuring software-induced risk
and supporting an objective deci-
sion-making process for remedia-
tion and software release. This
competency involves creating a seat
at the project management table for
software risk alongside budget and
scheduling concerns.

Governance should also be ap-
plied to the roll out and maturation
of an organization’s ESSF. The
framework’s owners can measure
project coverage and depth of assur-
ance activities, reported risks (and
their severity), and the progress of
software security knowledge and
skill creation, among other things.

Define a roadmap
Each competency depends some-
what on the others, and growing
each effectively demands thoughtful
collaboration. It’s foolish to attempt
to understand all the subtle inter-
dependencies from the start and at-
tempt a “big bang” roll out. Instead,
good ESSFs leverage key initial suc-
cesses in support of iterative adop-
tion and eventual maturation. Keep
two things in mind:

• Patience. It will take at least three to
five years to create a working,
evolving software security machine.
Initial organization-wide successes
can be shown within a year. Use that
time to obtain more buy-in and a
bigger budget, and target getting
each pursuit into the toddler stage
within the three-year timeframe.

• Customers. The customers are the
software groups that support the
organization’s lines of business.
Each milestone in the roadmap
should represent a value provided
to the development organization,
not another hurdle.

Thankfully, the organizations that
have been doing this work for a few

years now are starting to share some
of their experiences. Expert help is
increasingly available, too. As always,
use your community resources, and
good luck being the agent of change
in your organization!

John Steven is a technical director and
software security principal at Cigital. His
interests include J2EE security, and he
works in partnership with companies large
and small to help them build their own
software security capabilities internally.
Steven has an MS in computer science
and a BS in computer engineering from
Case Western University, in Cleveland,
Ohio. Contact him at jsteven@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 87

Figure 2. Role activities: what. In this relative
ordering, teams know which activities depend on
others. Providing any more of a detailed “when”
diagram can be seen as offensive and overly
constraining to each suborganization. Let people
conduct detailed project planning around these
activities themselves.

A
p

p
licatio

n
 level

Program securely

Conduct secure
design

Build secure,
component repository

D
ep

lo
ym

en
t

Build operational
security guide

Pro
g

ram
s

(ap
p

licatio
n

 p
o

rtfo
lio

s)

Construct
misuse/abuse cases

Document testable
security requirements

Application
development

