
Integrating Security Policies via Container Portable
Interceptors

Tom Ritter

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany
+49 30 3463 7278

ritter@fokus.fraunhofer.de

Rudolf Schreiner, Ulrich Lang
ObjectSecurity Ltd.

St John’s Innovation Centre, Cowley Road,
Cambridge, CB40WS, United Kingdom,

+44 1223 420252
{rudolf.schreiner|ulrich.lang@objectsecurity.com}

ABSTRACT
In the past, it was very common to develop middleware without
consideration of security from the very beginning. To integrate
security, the middleware that should be protected has to provide
appropriate hooks and interfaces, and has to meet the
requirements of the security architecture. In most cases it is not
practical to develop a new, secure middleware from scratch. It is
only possible to make minor modification to existing systems. In
this paper we describe the successful integration of a CORBA
Component based middleware and a policy management
framework for the definition, management and enforcement of
security policies. Integration is achieved by defining Container
Portable Interceptors and QoS Enablers which provide the
necessary hooks for interception and provision of context
interfaces to integrate the security framework. To practically
evaluate our concepts, we also describe how our reference
implementation is used for the development of an experimental
secure Air Traffic Control system.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/Server, Distributed
applications

D.4.6 [Security]: Access controls, authentication, information
flow controls

General Terms
Management, Security

Keywords
CORBA Portable Interceptors, Policy Management Framework,
CORBA Component Model, Container Portable Interceptors

1. INTRODUCTION
Enforcing appropriate security policies in distributed, component
based applications is a difficult task. In many cases, the security
functionality of standard middleware like CORBA or Enterprise
Java Beans is not sufficient to protect an application and its
resources. Today the common solution for this problem is still to
directly implement security enforcement in the application source
code. While this approach is very flexible, there are several
serious issues. First of all, it requires that the persons designing
and implementing the application components are security
specialists, too. In real life, this is rarely the case. Sometimes the

component developers also do not know in which environment
the component will be used and are therefore unable to define an
appropriate security policy. So it is common that the application
programmers simply ignore security. The second issue is the
coupling of functional and non-functional aspects, which hinders
component reusability. A component can only be reused if the
functional and non-functional requirements match.
Therefore it is necessary to clearly separate functional and non-
functional parts of an application. The functional parts, i.e. the
business code, are implemented in a component. The non-
functional parts, for example the enforcing of the security policy,
must not be mixed with the business code. These have to be
defined by a separate policy and to be enforced by the runtime
infrastructure of the component.
While this sounds good in theory, it is hard to do. First of all, a
generic framework to define and evaluate security policies is
needed. Secondly, it is necessary to integrate the security
framework with the middleware platform. The middleware has to
provide the necessary hooks to intercept calls and to obtain the
information required for security enforcement.
In the following, we describe the middleware platform we use, the
CORBA Component Model (CCM). We then describe our
security framework and its integration into CCM in detail and
finally evaluate it in a real world project.

1.1 CORBA Components
The CORBA Component Model (CCM) [1] is one of the best
platforms for developing large scale distributed systems. It is
based on the mature CORBA middleware [2] and includes several
more advanced concepts. It also simplifies the usage of the
CORBA Services.
CCM enhances the Object Model of CORBA. Figure 1 depicts the
features a CORBA Component can have. A component has a
special interface (equivalent interface). This interface provides
operations for introspection and navigation regarding other
component features. A component can provide a set of facets. A
facet is a named port providing a specific interface. Clients of this
component call operations on a facet. The facet’s counterpart, a
receptacle, is a named port where a specific interface can be
connected to. A facet of a CORBA Component in server role can
be connected to a receptacle of a CORBA Component in a client
role. Receptacle ports make dependencies to other interfaces
explicit, which helps to minimize wrong configurations and run-

time failures by providing type safety. As facets and receptacles
are used for operational interactions, event sources and event
sinks are used for asynchronous interaction. An event source can
publish or emit events of a certain type. Event sinks can consume
events of a certain type. Finally, a similar port concept for
continuous interactions (i.e. data streams) has been introduced by
the OMG to the CORBA Component Model as well. A stream
source port produces streams of data of a specific type while a
stream sink port can receive such data. Attributes can be used to
configure an instance of a CORBA Component.

Figure 1. Object Model of CCM

CCM defines the container as the run-time environment of a
CORBA Component (see figure 2), including an interface to the
component which is called context, that provides access to the
underlying platform services (e.g. CORBA Services) as well as
access to the application environment of the component (e.g.
connected interfaces at receptacle ports). Furthermore, the
component implementation provides a call-back interface to the
container which is in turn used to manage the life-cycle of the
component implementation. In the container also resides a Home,
which is an implementation of factory and finder pattern for
managing component instances.

{ SHAPE * MERGEFORMAT }

Figure 2. Container of CORBA Component

1.2 OpenPMF Policy Management
Framework Overview
In previous work we established that the CORBA Security
Services specification does not meet the requirements of complex,
distributed systems [3, 17]. To overcome the limitations of
CORBA security for CCM based applications, we developed the
OpenPMF policy management framework [4] to define, manage
and enforce security policies in complex distributed systems.
While this paper is focused on our CORBA/CCM middleware
platform, OpenPMF has been designed to also protect other
platforms and applications.

OpenPMF is based on an abstract model of middleware security
policies, defined in UML. From the abstract model we generated
a policy repository to store concrete instantiations of security
policies. Rich policies are defined in a consolidated way using a
policy description language (PDL) (see [5] for PDL example
excerpt). The policies are fed into the repository using a PDL
compiler. During the application startup or policy updates, the
security agents, also called Policy Enforcement Points (PEP), in
the application obtain the policy from the repository and
instantiate it. During runtime, the security agents intercept the
invocations and evaluate the policy, based on the invocation’s
context. If the invocation is not allowed by the policy, the
invocation is aborted and an exception is raised. In the following
we will describe in detail how context information is described
and obtained, and how policies are defined and enforced.
Due to space restrictions, we will only very briefly cover issues
related to assurance, e.g. how we ensure that the policy is
correctly enforced or how the integrity of the security framework
itself is protected. We also will not discuss the principal
limitations of security enforcement at the middleware level. Our
objective is access control on invocations at the middleware level.
This is a very important aspect in secure distributed systems, but
in the development and operation of such systems many other
aspects have to be considered as well, for example it has to be
ensured that the middleware level protection cannot be
circumvented by attacks at another level.

2. Context Information
A very important point in adaptive and reflective systems is the
description of context. The context gives information about the
invocation or the environment, and is used by the policy evaluator
to make its decisions. It consists of information describing both
the functional and non-functional aspects of the system.
Functional information for example includes the target of the call
and the operation to be invoked, which are both directly
associated with an invocation. Non-functional information is in
many cases also directly associated with an invocation, for
example the client’s credentials; in other cases it describes the
environment independently of individual invocations, for example
time or a position.
One of the biggest issues in the description and processing of
context information is the lack of standardization of its format and
semantics, mainly because it describes very different information
from different sources. It is therefore very hard to define a
standard and orthogonal format for the context. If the format is
well defined and restrictive it can be handled in a standard
manner, but it can only express very limited information. If on the
other side the format is very flexible, for example a buffer, it can
express very different information, but it is difficult to process in
a uniform way. Another point to consider here is not only the data
itself, but also the description of the type.
Context information is obtained from different sources, for
example the client’s credentials are provided by the underlying
security mechanism, while the invocation target and operation
have to be provided by the middleware platform. This
complicates obtaining the context information a lot.
The different sources and formats of context information make its
processing in policy management frameworks difficult, because it
is impossible to foresee all possibilities in the policy evaluator. In

OpenPMF we developed an orthogonal approach for the handling
of context information called Transformers.
The Transformers provide a uniform interface to the underlying
data sources. To obtain data from different sources, the policy
evaluator now can call the same function, whether the data is
provided by the middleware, the security mechanisms or by any
other source.
A standard interface to context information does not solve the
problem of the information format and semantics. The policy
evaluator still does not know how to process this information, for
example how to compare the data. We solved this issue by
moving the processing to the Transformer itself, because the
Transformer knows the data it processes. Instead of letting the
policy evaluator obtain the information from the Transformer and
compare it by itself with a selector from the policy, the policy
evaluator just calls the Transformer’s compare function with the
selector as an argument. The context information is obtained
automatically by the transformers during the comparison
operation.
The Transformer abstracts from all peculiarities of the underlying
platforms, the different data sources, data formats and semantics.
This greatly simplifies the policy evaluation and increases the
flexibility of OpenPMF.

3. Policy definition and evaluation
In most security systems, security policies are defined as access
control lists or using policy definition languages like Ponder. In
these systems, the language is a very central aspect of the system.
In our policy management framework, we use a different
approach. The central aspect is not the language, but the abstract
information model of the policy, the meta-policy. This meta-
policy gives an abstract way to describe policies, completely
independent from how the policy is expressed (for example in a
file). For the definition of the meta-policy we used the OMG’s
MetaObject Facilities (MOF) [6], and defined the meta-policy as
an UML model. Our meta-model is very flexible and describes in
a consolidated, unified way how to express policy hierarchies,
rules and the entities used for the rule definitions, for example
initiators, clients, targets and operations. This allows also the
handling of security policies based on different security models
like discretionary access control (DAC) [7], mandatory access
control (MAC) [8] or role-based access control (RBAC) [9] by
mapping the high level security policies to low level rules of the
meta-policy.
From the meta-policy, a CORBA based policy repository is
generated. The mapping of the model to the IDL interfaces is
defined by the OMG MOF standard. The meta-policy and the
repository derived from it do not solve the problem how to define
a policy. For this purpose we developed a simple policy
description language (PDL). It is able to describe policy
hierarchies and policy rules. In contrast to common trends, we do
not use XML for the policy description, because it was the initial
intention to manually write the policy. In the next OpenPMF
version, PDL will only be used as an internal representation for
the GUI, and XML will be supported. The policy, expressed in a
PDL text file, is compiled and loaded into the policy repository.
Vice versa, it is also possible to generate a PDL file from the
policy stored in the repository, or to visualize its logical structure.

The protection of the policy repository itself is a key issue of the
assurance of the overall security framework. Using OpenPMF for
protecting the repository is impossible; it would just generate a
recursion. So we hardcoded the access control for the repository
in the repository code itself and bootstrap the secure loading of
policies via command line arguments.
The policy enforcement is done by Policy Evaluators. They are
integrated into the middleware’s call chain, for example in
CORBA they are called by Portable Interceptors and in
components by Container Portable Interceptors (COPI). At
application startup, the Policy Evaluator registers itself with a
central Management Daemon, obtains the security policy from the
Policy Repository and instantiates it in an efficient and compact
internal representation. After the initialization, the Policy
Evaluator is automatically called for all invocations. It iterates
through the internal policy representation and calls the
Transformers associated with the entities in the rules, for example
to check the client’s identity. When a matching rule is found, the
appropriate action is triggered, in most cases this means that the
invocation is allowed. If no match is found, the invocation is
denied by default, an exception is raised, and a predefined
operation can be called. Policy Evaluator can be used both at the
client and server side of an invocation, depending on the security
policy to enforce.
A very important aspect of secure distributed systems is runtime
monitoring. In OpenPMF, a central monitoring system is used. All
events are sent to a central administrator console, where
appropriate action can be taken. The management console also
provides a runtime management of the security policies and their
enforcement, e.g. it is possible to update security at runtime.
Meta-policies, model based and adaptive policy definition, and
enforcement are powerful techniques for the development of
secure and complex distributed systems. But this is very hard to
implement in practice if the underlying middleware does not
support sufficient interfaces for obtaining context information or
the modification of the calls. As described above, this issue
already made access control at the middleware level in CORBA
very difficult. It is therefore necessary to analyze already during
the development of the middleware how to provide the necessary
hooks. In the following we will describe the Container Portable
Interceptors (COPI). They are the result of a close cooperation
between the container developers and the developers of the
adaptive security architecture, which requested many additional
features.

4. Container Portable Interceptors
As outlined before, it is crucial for evaluating and enforcing
security policies to have access to the context, and in particular to
have access to the call chain. It is important to have the hooks for
putting a security policy in place. The fundamental requirement
be able to intercept the call chain (which is not unique to security
policy integration) led to the definition of Portable Interceptors
(PI) as part of the CORBA specification [2]. PIs work on
unmarshaled messages. This implies that they can’t be used for
messages encryption. Secure transport connections like SSL can
be used instead.

The CORBA specification defines interfaces for the interceptors
and for registering them with the ORB. There are a number of
interception points defined which are called at specific points in

the call chain. Those interception points are also divided into
client-side and server-side interception points. Figure 3 gives an
overview of the Portable Interceptors.

Figure 3. Interception Points

With the definition of the CORBA Component Model the
CORBA Portable Interceptors can not be easily used for hooking
user dependent code into the application logic. This is because the
PI specification requires the registration of interceptors as part of
the initialization process of the ORB. This process, as well as the
complete management of the CORBA call chain, is done by the
container. Even worse, the ORB creation is done before any user
dependent code gets loaded into the container.

Two strategies are available to overcome this issue: Either add
proprietary extensions to the container, or adapt the Portable
Interceptors to the CORBA Component Model. The authors have
decided to follow the second strategy. Initiated by the COACH
project [10] and with the help of the participating partners a draft
definition of the Component Portable Interceptors (COPI) was
done. The result is currently in a standardization process and is
supported by other companies as well [11].

There are two main goals to be achieved with the definition of
COPI. The first one is to allow the smooth transformation of
CORBA applications based on Portable Interceptors to CORBA
Component based application. This means that, similar to the
migration from CORBA to CCM, the easy migration from PI to
COPI should be possible. The second goal is to extend the
concepts of Portable Interceptors to provide more flexibility than
plain CORBA Portable Interceptors give. CORBA Portable
Interceptors have one fundamental design feature which renders
them unusable for a very flexible and adaptive system
architecture: they are not able to modify the call chain. This
means they can only monitor the call, abandon a call or use
Forward Location exception to modify the target of a call.
Portable Interceptors can not be used to modify operation
parameters.

To achieve both goals while not putting to many constraints on
container vendors the Container Portable Interceptors are
separated into a basic and an extended part. The basic part covers
the same functionality as the plain CORBA Portable Interceptors
do and the extended part offers additional functionality for
modifying requests.

Since basic COPIs are meant for migrating PI code to component
level, COPI interception points should be called at the exact same
location as PI interception points would be called. This is easily
achievable since CCM is designed to be on top of plain CORBA
products. This means that for implementing the basic COPIs it is a
natural decision to use the PI as foundation. Furthermore, COPIs
have method signatures very similar to the ones of the PIs.

In contrast, the extended COPIs offer similar but different
interception points. While basic interception points are called

while the ORB is dispatching a call, the extended interception
points are called while the CCM container is dispatching a call.
This is schematically depicted in figure 4.

However, there is an important difference in the flow-rules
between basic and extended interceptors. The extended
interceptors can for example return a result for a method call and
can prevent the further call processing from reaching the
component implementation. This gives the opportunity to modify
the behavior of a component by providing different behavior
without changing component implementation.

The definition of the COPI interface does not prescribe in any
way how to implement the COPI interface and how to register the
interfaces within the container. The specification [11] offers a
way to do that by using an extended container category and the
QoS Enabler concept. This is an optional way of doing it.
Vendors can use other approaches to support the usage of COPI
interfaces in their containers. The QoS Enabler concept, which is
also used for implementing the hooks for integration of security
policies, is explained in the next section.

Figure 4. Basic and Extended Interceptors

5. QoS Enabler
The CORBA Component Model has defined the container model
for providing a high level of abstraction to the component
implementation. It also offers the possibility to load and to unload
user code (components) dynamically by installing or de-installing
Homes. Depending on mechanism used by the container vendor
and programming language this is realized by loading and
unloading shared libraries and it requires sophisticated
management of such artifacts at run-time. This feature is
implemented in Qedo [12].
The same principle is applied to the implementation of the COPI
interface by defining the QoS Enabler concept. A QoS Enabler is
a specialized component that can be loaded into a specialized
CCM container (extension container) and is able to hook in
additional functionality. Taking this approach allows the use of
plain CCM mechanisms for development and deployment of QoS
Enablers. The extension container offers the possibility to register
COPIs with the container. Each QoS Enabler is responsible for a
specific QoS category. In our case, we used the QoS Enabler
concept to implement access control. Here, the QoS Enabler
implements the Policy Enforcement Point. During initialization, it
loads and instantiates the security policy. At runtime, it intercepts

the invocations, calls the Policy Evaluator and, if the invocation is
not permitted, raises an exception.
The only condition that has to be ensured at run-time is that on
each relevant node a corresponding QoS Enabler is instantiated.
The QoS Enabler itself will furthermore be in contact with the
policy framework to get an update on the security policies that
have to be enforced and to centrally log security events like
policy violations.
At run-time, the QoS Enabler at the client side checks the identity
of the calling component. This is done at the interception point
send_request. It adds a security context to the call context. At the
server side the QoS Enabler is called at interception point
receive_request. The QoS Enabler checks the origin identity and
the target identity and checks whether there is a policy that has to
be applied for that call.
QoS Enablers are components, and can be loaded, removed and
configured like normal application components. This of course
raises security issues, e.g. if the QoS Enabler itself is unprotected,
an attacker could simple disable the policy enforcement by
removing the OpenPMF QoS Enabler. In our implementation, this
is not possible, since the complete underlying infrastructure is
protected as well by the OpenPMF policy management
framework.

6. Building a Secure System: Experimental
Air Traffic Control Application
So far, we described how to integrate the definition, management
and enforcement of security policies into the CORBA
Components Model. In the following we will evaluate our
concepts in a concrete project.
The goal of this project, called AD4 [13], is the development of
an innovative 3D visualization system for Air Traffic Control
(ATC). The visualization system itself is implemented using
CCM and is integrated with existing ATC simulation systems,
Eurocontrol Escape and Vitrociset ATRES. The functionality of
these simulation systems and other data sources like weather data
is also wrapped into CORBA Components.
From an architectural point of view, AD4 is very similar to future
Network Centric Air Traffic Control and Collaborative Decision
Making systems, and also shares many similarities with military
Network Centric Warfare. It integrates data from different sources
and organizations, and visualizes them for a human decision
maker. This raises several security concerns, because in such
future large and highly integrated systems of many organizations
with different security standards and from various countries, there
is a high risk of attack. Therefore it was decided to develop the
AD4 system as a prototypical secure application. While this was
initially planned as an academic exercise, during the course of the
project it turned into reality, because the different simulation
platforms are running at different project partners and have to be
used securely over the Internet, reflecting quite exactly the real
architecture and environment of the target applications.
As middleware platform for AD4, we use SecureMiddleware [14],
our reference implementation of the concepts described here. It
consists of Qedo, an enhanced implementation of the CORBA
Components Model with QoS support, MICO [15], a CORBA
ORB with improved support for security, and the OpenPMF
Policy Management Framework with underlying security

infrastructure like a PKI and directory services. In addition to the
CCM runtime platform, SecureMiddleware also includes a model
driven development tool chain based on the OMG’s Model
Driven Architecture. This tool chain greatly reduces the
complexity in designing the system and in defining security
policies by raising the level of abstraction. It is possible to define
application components and access control policies in a platform
independent way by using UML2. A model transformation builds
platform specific models (CCM models and security models)
where additional refinement of these models can be done later by
using a graphical modeling tool. Additional model
transformations create programming language specific artifacts
and specific security rules.
Before the security architecture for AD4 can be developed, it is
necessary to define the security requirements. While in many
secure systems, esp. in the military domain, confidentiality plays
the most important role, in our system it is a lesser concern. The
most important security objectives are availability and integrity.
First of all, internal or external attackers have to be prevented
from disrupting the correct operation of the system, e.g. by
crashing it. It has also to be ensured that no attacker is able to
spoof tracks or to modify other data.
The integrity of information is protected by means of access
control. Only authorized sources are allowed to feed data into the
system, and we also control the access of human users to the
system. This is done using OpenPMF access control policies. For
operative interfaces we use the RBAC model. For event based
communication, which implements the main information flow in
the system, MAC would be a possible choice. But since our
system does not process confidential information we just allow
certain flows using access control rules without labels or
clearances.
A very important aspect here is the correctness of the security
policy. If an interaction is not explicitly allowed by the policy, it
is automatically denied by the Policy Evaluator. In an ATC
system, this can lead to very serious consequences. As we learnt
during the development of the system, the manual definition of
the security policies is a very difficult and error prone process.
Human security administrators are not able to define the security
policy with a sufficient level of assurance, because of the high
overall complexity of the system and its interactions. For this
reason, we integrated the policy definition into the various steps
of the model driven engineering process and automatically
generate the security policies from the functional model of the
application, using a model transformation.
The QoS Enablers and OpenPMF provide access control on the
interfaces of the components and their infrastructure. This means
for example that an attacker cannot successfully inject false tracks
into the system or reconfigure it. But this security enforcement at
the endpoints does not protect from Denial of Service (DoS)
attacks; an attacker would still be able to overload the system.
Full protection against such attacks is impossible. To reduce this
risk, we use the concept of segmentation of the system into
different domains. Within a domain, which is for example a
control centre, the risk of a DoS attack is low and could be easily
countered, since the physical access to the local systems is
limited. Between the domains, here also between the
organizations and the Internet, a Domain Boundary Controller
(DBC) is used. This DBC, the ObjectWall IIOP Proxy [16], is

also integrated with OpenPMF and forwards all legitimate
requests which are authenticated and authorized according to the
security policy at the DBC. An attacker is now still able to launch
a DoS attack against the DBC and stop the communication
between the domains, but cannot attack the core functionality
inside a domain anymore.
After some smaller tests, a first version of the AD4 application
with simplified business logic was implemented and installed at
the project partners’ sites, in order to practically evaluate the
communication, middleware and security infrastructure.
A very important aspect in distributed systems is performance. A
security system with a too big impact on the overall performance
is not really usable. In the current version of SecureMiddleware,
we considered performance optimizations at the architectural
level, but not really at code level. We also did not yet run
extended benchmarks, which is a very difficult task anyway.
Some very preliminary tests, mainly empty calls with a default
crypto suite, showed that encryption, esp. the authentication, does
have a considerable influence on the overall performance of the
system, esp. on the CPU time, which is doubled. The additional
effect of the Portable Interceptors and the policy evaluation is
low. The CPU time used is increased by several percents, while
the difference in the wall time is about 10-15%. In our current test
applications the security enforcement did not raise any
performance issues so far; therefore we did not yet implement
optimizations of the code.
Apart from the abovementioned and now resolved issue related to
correct policy definition, the policy management and enforcement
at the QoS Enablers worked as expected and met the initial
requirements. It was possible to define and enforce appropriate
policies of sufficient granularity, to centrally manage the policies
and Policy Evaluators in a large scale distributed system, and to
monitor all relevant events.

7. Related Work
Many concepts described in this paper are based on previous and
related work in middleware security, both in ongoing research and
in already existing standards and implementations. For example
the usage of Portable Interceptors for implementing access control
is widely used in CORBA security [3]. [17] gives an overview
over many different approaches in middleware security with a
focus on access control and CORBA.

8. Conclusion
The separation of functional and non-functional aspects is crucial
when developing reusable components and secure systems, but is
very hard to fully achieve with today’s platforms. We presented
an integrated secure middleware based on extended CORBA
Component Model and the OpenPMF policy management
framework. QoS Enablers are used to provide implementations of
the Container Portable Interceptors and the hooks required for the
security enforcement. Policies can now be defined and updated
independently of the component, at application startup and at
runtime.
Our secure middleware was evaluated in several test applications
and is currently successfully used in an experimental air traffic
control system, which is deployed across the internet. It meets all
initial design requirements; we were able to define, manage and
enforce appropriate security policies for the components and
infrastructure. Together with other security infrastructure like the

ObjectWall IIOP Proxy, it is an important building block for the
development of secure systems. However, the manual definition
of security policies turned out to be cumbersome. This issue was
improved by integrating security into the model based software
engineering process, resulting in automated and assisted policy
generation. The current snapshot of our system is mainly targeted
at relatively static applications, as it does not yet fully meet the
requirements of highly dynamic systems. In the nearer future, we
plan to add policy based adaptation.

9. References

[1] OMG, “CORBA Component Model”, OMG document

number formal/02-06-65
[2] OMG, “Common Object Request Broker Architecture”

OMG document number formal/04-03-12

[3] Lang, U., Schreiner, R. Developing Secure Distributed
Systems with CORBA, ISBN 1-58053-295-0,
Artechhouse, 2002

[4] ObjectSecurity, OpenPMF project, { HYPERLINK
"http://www.openpmf.org" }

[5] Lang, U., Schreiner, R., Integrated IT Security: Air-Traffic
Management Case Study, Proceedings of the ISSE
Conference , September 2005

[6] OMG, “MOF 2.0” final adopted specification, OMG
document number ptc/03-10-04

[7] Bell, D., LaPadula, L., Secure Computer Systems:
Mathematical Foundations and Model. MITRE Report
MTR, 2547, v2, 1973.

[8] Sandhu, R.S. and Samarati, P. Access control: Principles
and practice. IEEE Communications, Vol. 32, No. 9, pages
40-48, 1994.

[9] Sandhu, R., Coyne, E., Feinstein, H. and Youman, C.
Role-Based Access Control Models. IEEE Computer, Vol.
29, No. 8, pages 38 - 47, 1996.

[10] COACH Consortium. Component Based Open Source
Architecture for Distributed Telecom Applications.
(http://www.ist-coach.org). May 2003

[11] OMG,”QoS 4 CCM” final adopted specification, OMG
document number ptc/2006-04-15

[12] Qedo – QoS Enabled Distributed Objects,
http://www.qedo.org

[13] AD4 Consortium. EU FP6 R&D project AD4 - 4D Virtual
Airspace Management System, { HYPERLINK
"http://www.ad4-project.com/" }

[14] ObjectSecurity & Fraunhofer FOKUS, SecureMiddleware
project, www.securemiddleware.org

[15] MICO CORBA project, www.mico.org
[16] ObjectSecurity, ObjectWall IIOP firewall,

www.objectwall.com
[17] Lang, U. Access Policies for Middleware Ph.D. thesis.

University of Cambridge. Cambridge, UK, 2003

http://www.openpmf.org/
http://www.openpmf.org/
http://www.ad4-project.com/
http://www.ad4-project.com/

10. CVs
10.1 Tom Ritter
Tom Ritter graduated with a Masters degree in Computer Science
from the Technical University of Berlin. Since 1998 he worked at
Fraunhofer Institute FOKUS in the area of tool development and
distributed systems. His major interest is the development of
component-oriented middleware platforms with consideration of
extra-functional properties and the development of model based
tools. In his recent work he developed a CORBA Component
based Middleware Platform (Qedo). Tom is involved in various
standardization activities at the Object Management Group and
has contributed to workshops and conferences.

10.2 Rudolf Schreiner
Rudolf Schreiner received his Master’s Degree (Dipl-Phys.) in
physics from University of Munich in 1993. In 2000, he became
one of the two founders and chief technology officer of
ObjectSecurity Ltd. Rudolf’s main interest is the development of
secure distributed systems in critical domains. He is the principal
developer of OpenPMF and ObjectWall.

10.3 Ulrich Lang
Ulrich Lang received his Ph.D. in information security from the
Security Group of the University of Cambridge Computer
Laboratory in 2003, and his Master's Degree (M.Sc.) in
information security from Royal Holloway College (University of
London) in 1997, after having studied computer science with
management at the University of Munich and at Royal Holloway
College (University of London). In 2000, he became one of the
two founders and chief executive officer of ObjectSecurity Ltd.
His current main interest is the reduction of the complexity of
security administration in distributed systems through improved
usability and visualisation.

	1. INTRODUCTION
	1.1 CORBA Components
	1.2 OpenPMF Policy Management Framework Overview
	2. Context Information
	3. Policy definition and evaluation
	4. Container Portable Interceptors
	5. QoS Enabler
	6. Building a Secure System: Experimental Air Traffic Control Application
	7. Related Work
	8. Conclusion
	9. References
	10. CVs
	10.1 Tom Ritter
	10.2 Rudolf Schreiner
	10.3 Ulrich Lang

