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ABSTRACT 
In the past, it was very common to develop middleware without 
consideration of security from the very beginning. To integrate 
security, the middleware that should be protected has to provide 
appropriate hooks and interfaces, and has to meet the 
requirements of the security architecture. In most cases it is not 
practical to develop a new, secure middleware from scratch. It is 
only possible to make minor modification to existing systems. In 
this paper we describe the successful integration of a CORBA 
Component based middleware and a policy management 
framework for the definition, management and enforcement of 
security policies. Integration is achieved by defining Container 
Portable Interceptors and QoS Enablers which provide the 
necessary hooks for interception and provision of context 
interfaces to integrate the security framework. To practically 
evaluate our concepts, we also describe how our reference 
implementation is used for the development of an experimental 
secure Air Traffic Control system. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Client/Server, Distributed 
applications 

D.4.6 [Security]: Access controls, authentication, information 
flow controls 

General Terms 
Management, Security 

Keywords 
CORBA Portable Interceptors, Policy Management Framework, 
CORBA Component Model, Container Portable Interceptors 

1. INTRODUCTION 
Enforcing appropriate security policies in distributed, component 
based applications is a difficult task. In many cases, the security 
functionality of standard middleware like CORBA or Enterprise 
Java Beans is not sufficient to protect an application and its 
resources. Today the common solution for this problem is still to 
directly implement security enforcement in the application source 
code. While this approach is very flexible, there are several 
serious issues. First of all, it requires that the persons designing 
and implementing the application components are security 
specialists, too. In real life, this is rarely the case. Sometimes the 

component developers also do not know in which environment 
the component will be used and are therefore unable to define an 
appropriate security policy. So it is common that the application 
programmers simply ignore security. The second issue is the 
coupling of functional and non-functional aspects, which hinders 
component reusability. A component can only be reused if the 
functional and non-functional requirements match.  
Therefore it is necessary to clearly separate functional and non-
functional parts of an application. The functional parts, i.e. the 
business code, are implemented in a component. The non-
functional parts, for example the enforcing of the security policy, 
must not be mixed with the business code. These have to be 
defined by a separate policy and to be enforced by the runtime 
infrastructure of the component. 
While this sounds good in theory, it is hard to do. First of all, a 
generic framework to define and evaluate security policies is 
needed. Secondly, it is necessary to integrate the security 
framework with the middleware platform. The middleware has to 
provide the necessary hooks to intercept calls and to obtain the 
information required for security enforcement. 
In the following, we describe the middleware platform we use, the 
CORBA Component Model (CCM). We then describe our 
security framework and its integration into CCM in detail and 
finally evaluate it in a real world project. 

1.1 CORBA Components 
The CORBA Component Model (CCM) [1] is one of the best 
platforms for developing large scale distributed systems. It is 
based on the mature CORBA middleware [2] and includes several 
more advanced concepts. It also simplifies the usage of the 
CORBA Services. 
CCM enhances the Object Model of CORBA. Figure 1 depicts the 
features a CORBA Component can have. A component has a 
special interface (equivalent interface). This interface provides 
operations for introspection and navigation regarding other 
component features. A component can provide a set of facets. A 
facet is a named port providing a specific interface. Clients of this 
component call operations on a facet. The facet’s counterpart, a 
receptacle, is a named port where a specific interface can be 
connected to. A facet of a CORBA Component in server role can 
be connected to a receptacle of a CORBA Component in a client 
role. Receptacle ports make dependencies to other interfaces 
explicit, which helps to minimize wrong configurations and run-



time failures by providing type safety. As facets and receptacles 
are used for operational interactions, event sources and event 
sinks are used for asynchronous interaction. An event source can 
publish or emit events of a certain type. Event sinks can consume 
events of a certain type. Finally, a similar port concept for 
continuous interactions (i.e. data streams) has been introduced by 
the OMG to the CORBA Component Model as well. A stream 
source port produces streams of data of a specific type while a 
stream sink port can receive such data. Attributes can be used to 
configure an instance of a CORBA Component. 
 

 
Figure 1. Object Model of CCM 

 
CCM defines the container as the run-time environment of a 
CORBA Component (see figure 2), including an interface to the 
component which is called context, that provides access to the 
underlying platform services (e.g. CORBA Services) as well as 
access to the application environment of the component (e.g. 
connected interfaces at receptacle ports). Furthermore, the 
component implementation provides a call-back interface to the 
container which is in turn used to manage the life-cycle of the 
component implementation. In the container also resides a Home, 
which is an implementation of factory and finder pattern for 
managing component instances. 
 

{ SHAPE  \* MERGEFORMAT } 
 

Figure 2. Container of CORBA Component 
 

 

1.2 OpenPMF Policy Management 
Framework Overview 
In previous work we established that the CORBA Security 
Services specification does not meet the requirements of complex, 
distributed systems [3, 17]. To overcome the limitations of 
CORBA security for CCM based applications, we developed the 
OpenPMF policy management framework [4] to define, manage 
and enforce security policies in complex distributed systems. 
While this paper is focused on our CORBA/CCM middleware 
platform, OpenPMF has been designed to also protect other 
platforms and applications. 

OpenPMF is based on an abstract model of middleware security 
policies, defined in UML. From the abstract model we generated 
a policy repository to store concrete instantiations of security 
policies. Rich policies are defined in a consolidated way using a 
policy description language (PDL) (see [5] for PDL example 
excerpt). The policies are fed into the repository using a PDL 
compiler. During the application startup or policy updates, the 
security agents, also called Policy Enforcement Points (PEP), in 
the application obtain the policy from the repository and 
instantiate it. During runtime, the security agents intercept the 
invocations and evaluate the policy, based on the invocation’s 
context. If the invocation is not allowed by the policy, the 
invocation is aborted and an exception is raised.  In the following 
we will describe in detail how context information is described 
and obtained, and how policies are defined and enforced. 
Due to space restrictions, we will only very briefly cover issues 
related to assurance, e.g. how we ensure that the policy is 
correctly enforced or how the integrity of the security framework 
itself is protected. We also will not discuss the principal 
limitations of security enforcement at the middleware level. Our 
objective is access control on invocations at the middleware level. 
This is a very important aspect in secure distributed systems, but 
in the development and operation of such systems many other 
aspects have to be considered as well, for example it has to be 
ensured that the middleware level protection cannot be 
circumvented by attacks at another level.  

2. Context Information 
A very important point in adaptive and reflective systems is the 
description of context. The context gives information about the 
invocation or the environment, and is used by the policy evaluator 
to make its decisions. It consists of information describing both 
the functional and non-functional aspects of the system. 
Functional information for example includes the target of the call 
and the operation to be invoked, which are both directly 
associated with an invocation. Non-functional information is in 
many cases also directly associated with an invocation, for 
example the client’s credentials; in other cases it describes the 
environment independently of individual invocations, for example 
time or a position. 
One of the biggest issues in the description and processing of 
context information is the lack of standardization of its format and 
semantics, mainly because it describes very different information 
from different sources. It is therefore very hard to define a 
standard and orthogonal format for the context. If the format is 
well defined and restrictive it can be handled in a standard 
manner, but it can only express very limited information. If on the 
other side the format is very flexible, for example a buffer, it can 
express very different information, but it is difficult to process in 
a uniform way. Another point to consider here is not only the data 
itself, but also the description of the type.  
Context information is obtained from different sources, for 
example the client’s credentials are provided by the underlying 
security mechanism, while the invocation target and operation 
have to be provided by the middleware platform. This 
complicates obtaining the context information a lot. 
The different sources and formats of context information make its 
processing in policy management frameworks difficult, because it 
is impossible to foresee all possibilities in the policy evaluator. In 



OpenPMF we developed an orthogonal approach for the handling 
of context information called Transformers.  
The Transformers provide a uniform interface to the underlying 
data sources. To obtain data from different sources, the policy 
evaluator now can call the same function, whether the data is 
provided by the middleware, the security mechanisms or by any 
other source.  
A standard interface to context information does not solve the 
problem of the information format and semantics. The policy 
evaluator still does not know how to process this information, for 
example how to compare the data. We solved this issue by 
moving the processing to the Transformer itself, because the 
Transformer knows the data it processes. Instead of letting the 
policy evaluator obtain the information from the Transformer and 
compare it by itself with a selector from the policy, the policy 
evaluator just calls the Transformer’s compare function with the 
selector as an argument. The context information is obtained 
automatically by the transformers during the comparison 
operation. 
The Transformer abstracts from all peculiarities of the underlying 
platforms, the different data sources, data formats and semantics. 
This greatly simplifies the policy evaluation and increases the 
flexibility of OpenPMF. 

3. Policy definition and evaluation 
In most security systems, security policies are defined as access 
control lists or using policy definition languages like Ponder. In 
these systems, the language is a very central aspect of the system. 
In our policy management framework, we use a different 
approach. The central aspect is not the language, but the abstract 
information model of the policy, the meta-policy. This meta-
policy gives an abstract way to describe policies, completely 
independent from how the policy is expressed (for example in a 
file). For the definition of the meta-policy we used the OMG’s 
MetaObject Facilities (MOF) [6], and defined the meta-policy as 
an UML model. Our  meta-model is very flexible and describes in 
a consolidated, unified way how to express policy hierarchies, 
rules and the entities used for the rule definitions, for example 
initiators, clients, targets and operations. This allows also the 
handling of security policies based on different security models 
like discretionary access control (DAC) [7], mandatory access 
control (MAC) [8] or role-based access control (RBAC) [9] by 
mapping the high level security policies to low level rules of the 
meta-policy.  
From the meta-policy, a CORBA based policy repository is 
generated. The mapping of the model to the IDL interfaces is 
defined by the OMG MOF standard. The meta-policy and the 
repository derived from it do not solve the problem how to define 
a policy. For this purpose we developed a simple policy 
description language (PDL). It is able to describe policy 
hierarchies and policy rules. In contrast to common trends, we do 
not use XML for the policy description, because it was the initial 
intention to manually write the policy. In the next OpenPMF 
version, PDL will only be used as an internal representation for 
the GUI, and XML will be supported. The policy, expressed in a 
PDL text file, is compiled and loaded into the policy repository. 
Vice versa, it is also possible to generate a PDL file from the 
policy stored in the repository, or to visualize its logical structure.  

The protection of the policy repository itself is a key issue of the 
assurance of the overall security framework. Using OpenPMF for 
protecting the repository is impossible; it would just generate a 
recursion. So we hardcoded the access control for the repository 
in the repository code itself and bootstrap the secure loading of 
policies via command line arguments. 
The policy enforcement is done by Policy Evaluators. They are 
integrated into the middleware’s call chain, for example in 
CORBA they are called by Portable Interceptors and in 
components by Container Portable Interceptors (COPI). At 
application startup, the Policy Evaluator registers itself with a 
central Management Daemon, obtains the security policy from the 
Policy Repository and instantiates it in an efficient and compact 
internal representation. After the initialization, the Policy 
Evaluator is automatically called for all invocations. It iterates 
through the internal policy representation and calls the 
Transformers associated with the entities in the rules, for example 
to check the client’s identity. When a matching rule is found, the 
appropriate action is triggered, in most cases this means that the 
invocation is allowed. If no match is found, the invocation is 
denied by default, an exception is raised, and a predefined 
operation can be called. Policy Evaluator can be used both at the 
client and server side of an invocation, depending on the security 
policy to enforce. 
A very important aspect of secure distributed systems is runtime 
monitoring. In OpenPMF, a central monitoring system is used. All 
events are sent to a central administrator console, where 
appropriate action can be taken. The management console also 
provides a runtime management of the security policies and their 
enforcement, e.g. it is possible to update security at runtime. 
Meta-policies, model based and adaptive policy definition, and 
enforcement are powerful techniques for the development of 
secure and complex distributed systems. But this is very hard to 
implement in practice if the underlying middleware does not 
support sufficient interfaces for obtaining context information or 
the modification of the calls. As described above, this issue 
already made access control at the middleware level in CORBA 
very difficult. It is therefore necessary to analyze already during 
the development of the middleware how to provide the necessary 
hooks. In the following we will describe the Container Portable 
Interceptors (COPI). They are the result of a close cooperation 
between the container developers and the developers of the 
adaptive security architecture, which requested many additional 
features. 

4. Container Portable Interceptors 
As outlined before, it is crucial for evaluating and enforcing 
security policies to have access to the context, and in particular to 
have access to the call chain. It is important to have the hooks for 
putting a security policy in place. The fundamental requirement 
be able to intercept the call chain (which is not unique to security 
policy integration) led to the definition of Portable Interceptors 
(PI) as part of the CORBA specification [2]. PIs work on 
unmarshaled messages. This implies that they can’t be used for 
messages encryption. Secure transport connections like SSL can 
be used instead.  

The CORBA specification defines interfaces for the interceptors 
and for registering them with the ORB. There are a number of 
interception points defined which are called at specific points in 



the call chain. Those interception points are also divided into 
client-side and server-side interception points. Figure 3 gives an 
overview of the Portable Interceptors. 

 
Figure 3. Interception Points 

With the definition of the CORBA Component Model the 
CORBA Portable Interceptors can not be easily used for hooking 
user dependent code into the application logic. This is because the 
PI specification requires the registration of interceptors as part of 
the initialization process of the ORB. This process, as well as the 
complete management of the CORBA call chain, is done by the 
container. Even worse, the ORB creation is done before any user 
dependent code gets loaded into the container.  

Two strategies are available to overcome this issue: Either add 
proprietary extensions to the container, or adapt the Portable 
Interceptors to the CORBA Component Model. The authors have 
decided to follow the second strategy. Initiated by the COACH 
project [10] and with the help of the participating partners a draft 
definition of the Component Portable Interceptors (COPI) was 
done. The result is currently in a standardization process and is 
supported by other companies as well [11]. 

There are two main goals to be achieved with the definition of 
COPI. The first one is to allow the smooth transformation of 
CORBA applications based on Portable Interceptors to CORBA 
Component based application. This means that, similar to the 
migration from CORBA to CCM, the easy migration from PI to 
COPI should be possible. The second goal is to extend the 
concepts of Portable Interceptors to provide more flexibility than 
plain CORBA Portable Interceptors give. CORBA Portable 
Interceptors have one fundamental design feature which renders 
them unusable for a very flexible and adaptive system 
architecture: they are not able to modify the call chain. This 
means they can only monitor the call, abandon a call or use 
Forward Location exception to modify the target of a call. 
Portable Interceptors can not be used to modify operation 
parameters. 

To achieve both goals while not putting to many constraints on 
container vendors the Container Portable Interceptors are 
separated into a basic and an extended part. The basic part covers 
the same functionality as the plain CORBA Portable Interceptors 
do and the extended part offers additional functionality for 
modifying requests. 

Since basic COPIs are meant for migrating PI code to component 
level, COPI interception points should be called at the exact same 
location as PI interception points would be called. This is easily 
achievable since CCM is designed to be on top of plain CORBA 
products. This means that for implementing the basic COPIs it is a 
natural decision to use the PI as foundation. Furthermore, COPIs 
have method signatures very similar to the ones of the PIs.  

In contrast, the extended COPIs offer similar but different 
interception points. While basic interception points are called 

while the ORB is dispatching a call, the extended interception 
points are called while the CCM container is dispatching a call. 
This is schematically depicted in figure 4.  

However, there is an important difference in the flow-rules 
between basic and extended interceptors. The extended 
interceptors can for example return a result for a method call and 
can prevent the further call processing from reaching the 
component implementation. This gives the opportunity to modify 
the behavior of a component by providing different behavior 
without changing component implementation. 

The definition of the COPI interface does not prescribe in any 
way how to implement the COPI interface and how to register the 
interfaces within the container. The specification [11] offers a 
way to do that by using an extended container category and the 
QoS Enabler concept. This is an optional way of doing it. 
Vendors can use other approaches to support the usage of COPI 
interfaces in their containers. The QoS Enabler concept, which is 
also used for implementing the hooks for integration of security 
policies, is explained in the next section. 

 

 
Figure 4. Basic and Extended Interceptors 

5. QoS Enabler 
The CORBA Component Model has defined the container model 
for providing a high level of abstraction to the component 
implementation. It also offers the possibility to load and to unload 
user code (components) dynamically by installing or de-installing 
Homes. Depending on mechanism used by the container vendor 
and programming language this is realized by loading and 
unloading shared libraries and it requires sophisticated 
management of such artifacts at run-time. This feature is 
implemented in Qedo [12]. 
The same principle is applied to the implementation of the COPI 
interface by defining the QoS Enabler concept. A QoS Enabler is 
a specialized component that can be loaded into a specialized 
CCM container (extension container) and is able to hook in 
additional functionality. Taking this approach allows the use of 
plain CCM mechanisms for development and deployment of QoS 
Enablers. The extension container offers the possibility to register 
COPIs with the container. Each QoS Enabler is responsible for a 
specific QoS category. In our case, we used the QoS Enabler 
concept to implement access control. Here, the QoS Enabler 
implements the Policy Enforcement Point. During initialization, it 
loads and instantiates the security policy. At runtime, it intercepts 



the invocations, calls the Policy Evaluator and, if the invocation is 
not permitted, raises an exception.  
The only condition that has to be ensured at run-time is that on 
each relevant node a corresponding QoS Enabler is instantiated. 
The QoS Enabler itself will furthermore be in contact with the 
policy framework to get an update on the security policies that 
have to be enforced and to centrally log security events like 
policy violations. 
At run-time, the QoS Enabler at the client side checks the identity 
of the calling component. This is done at the interception point 
send_request. It adds a security context to the call context. At the 
server side the QoS Enabler is called at interception point 
receive_request. The QoS Enabler checks the origin identity and 
the target identity and checks whether there is a policy that has to 
be applied for that call. 
QoS Enablers are components, and can be loaded, removed and 
configured like normal application components. This of course 
raises security issues, e.g. if the QoS Enabler itself is unprotected, 
an attacker could simple disable the policy enforcement by 
removing the OpenPMF QoS Enabler. In our implementation, this 
is not possible, since the complete underlying infrastructure is 
protected as well by the OpenPMF policy management 
framework.  

6. Building a Secure System: Experimental 
Air Traffic Control Application 
So far, we described how to integrate the definition, management 
and enforcement of security policies into the CORBA 
Components Model. In the following we will evaluate our 
concepts in a concrete project. 
The goal of this project, called AD4 [13], is the development of 
an innovative 3D visualization system for Air Traffic Control 
(ATC). The visualization system itself is implemented using 
CCM and is integrated with existing ATC simulation systems, 
Eurocontrol Escape and Vitrociset ATRES. The functionality of 
these simulation systems and other data sources like weather data 
is also wrapped into CORBA Components.  
From an architectural point of view, AD4 is very similar to future 
Network Centric Air Traffic Control and Collaborative Decision 
Making systems, and also shares many similarities with military 
Network Centric Warfare. It integrates data from different sources 
and organizations, and visualizes them for a human decision 
maker. This raises several security concerns, because in such 
future large and highly integrated systems of many organizations 
with different security standards and from various countries, there 
is a high risk of attack. Therefore it was decided to develop the 
AD4 system as a prototypical secure application. While this was 
initially planned as an academic exercise, during the course of the 
project it turned into reality, because the different simulation 
platforms are running at different project partners and have to be 
used securely over the Internet, reflecting quite exactly the real 
architecture and environment of the target applications. 
As middleware platform for AD4, we use SecureMiddleware [14], 
our reference implementation of the concepts described here. It 
consists of Qedo, an enhanced implementation of the CORBA 
Components Model with QoS support, MICO [15], a CORBA 
ORB with improved support for security, and the OpenPMF 
Policy Management Framework with underlying security 

infrastructure like a PKI and directory services. In addition to the 
CCM runtime platform, SecureMiddleware also includes a model 
driven development tool chain based on the OMG’s Model 
Driven Architecture. This tool chain greatly reduces the 
complexity in designing the system and in defining security 
policies by raising the level of abstraction. It is possible to define 
application components and access control policies in a platform 
independent way by using UML2. A model transformation builds 
platform specific models (CCM models and security models) 
where additional refinement of these models can be done later by 
using a graphical modeling tool. Additional model 
transformations create programming language specific artifacts 
and specific security rules. 
Before the security architecture for AD4 can be developed, it is 
necessary to define the security requirements. While in many 
secure systems, esp. in the military domain, confidentiality plays 
the most important role, in our system it is a lesser concern. The 
most important security objectives are availability and integrity. 
First of all, internal or external attackers have to be prevented 
from disrupting the correct operation of the system, e.g. by 
crashing it. It has also to be ensured that no attacker is able to 
spoof tracks or to modify other data. 
The integrity of information is protected by means of access 
control. Only authorized sources are allowed to feed data into the 
system, and we also control the access of human users to the 
system. This is done using OpenPMF access control policies. For 
operative interfaces we use the RBAC model. For event based 
communication, which implements the main information flow in 
the system, MAC would be a possible choice. But since our 
system does not process confidential information we just allow 
certain flows using access control rules without labels or 
clearances.  
A very important aspect here is the correctness of the security 
policy. If an interaction is not explicitly allowed by the policy, it 
is automatically denied by the Policy Evaluator. In an ATC 
system, this can lead to very serious consequences. As we learnt 
during the development of the system, the manual definition of 
the security policies is a very difficult and error prone process. 
Human security administrators are not able to define the security 
policy with a sufficient level of assurance, because of the high 
overall complexity of the system and its interactions. For this 
reason, we integrated the policy definition into the various steps 
of the model driven engineering process and automatically 
generate the security policies from the functional model of the 
application, using a model transformation. 
The QoS Enablers and OpenPMF provide access control on the 
interfaces of the components and their infrastructure. This means 
for example that an attacker cannot successfully inject false tracks 
into the system or reconfigure it. But this security enforcement at 
the endpoints does not protect from Denial of Service (DoS) 
attacks; an attacker would still be able to overload the system. 
Full protection against such attacks is impossible. To reduce this 
risk, we use the concept of segmentation of the system into 
different domains. Within a domain, which is for example a 
control centre, the risk of a DoS attack is low and could be easily 
countered, since the physical access to the local systems is 
limited. Between the domains, here also between the 
organizations and the Internet, a Domain Boundary Controller 
(DBC) is used. This DBC, the ObjectWall IIOP Proxy [16], is 



also integrated with OpenPMF and forwards all legitimate 
requests which are authenticated and authorized according to the 
security policy at the DBC. An attacker is now still able to launch 
a DoS attack against the DBC and stop the communication 
between the domains, but cannot attack the core functionality 
inside a domain anymore. 
After some smaller tests, a first version of the AD4 application 
with simplified business logic was implemented and installed at 
the project partners’ sites, in order to practically evaluate the 
communication, middleware and security infrastructure.   
A very important aspect in distributed systems is performance. A 
security system with a too big impact on the overall performance 
is not really usable. In the current version of SecureMiddleware, 
we considered performance optimizations at the architectural 
level, but not really at code level. We also did not yet run 
extended benchmarks, which is a very difficult task anyway. 
Some very preliminary tests, mainly empty calls with a default 
crypto suite, showed that encryption, esp. the authentication, does 
have a considerable influence on the overall performance of the 
system, esp. on the CPU time, which is doubled. The additional 
effect of the Portable Interceptors and the policy evaluation is 
low. The CPU time used is increased by several percents, while 
the difference in the wall time is about 10-15%. In our current test 
applications the security enforcement did not raise any 
performance issues so far; therefore we did not yet implement 
optimizations of the code.  
Apart from the abovementioned and now resolved issue related to 
correct policy definition, the policy management and enforcement 
at the QoS Enablers worked as expected and met the initial 
requirements. It was possible to define and enforce appropriate 
policies of sufficient granularity, to centrally manage the policies 
and Policy Evaluators in a large scale distributed system, and to 
monitor all relevant events.  

7. Related Work 
Many concepts described in this paper are based on previous and 
related work in middleware security, both in ongoing research and 
in already existing standards and implementations. For example 
the usage of Portable Interceptors for implementing access control 
is widely used in CORBA security [3]. [17] gives an overview 
over many different approaches in middleware security with a 
focus on access control and CORBA. 

8. Conclusion 
The separation of functional and non-functional aspects is crucial 
when developing reusable components and secure systems, but is 
very hard to fully achieve with today’s platforms. We presented 
an integrated secure middleware based on extended CORBA 
Component Model and the OpenPMF policy management 
framework. QoS Enablers are used to provide implementations of 
the Container Portable Interceptors and the hooks required for the 
security enforcement. Policies can now be defined and updated 
independently of the component, at application startup and at 
runtime. 
Our secure middleware was evaluated in several test applications 
and is currently successfully used in an experimental air traffic 
control system, which is deployed across the internet. It meets all 
initial design requirements; we were able to define, manage and 
enforce appropriate security policies for the components and 
infrastructure. Together with other security infrastructure like the 

ObjectWall IIOP Proxy, it is an important building block for the 
development of secure systems. However, the manual definition 
of security policies turned out to be cumbersome. This issue was 
improved by integrating security into the model based software 
engineering process, resulting in automated and assisted policy 
generation. The current snapshot of our system is mainly targeted 
at relatively static applications, as it does not yet fully meet the 
requirements of highly dynamic systems. In the nearer future, we 
plan to add policy based adaptation. 
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