
Model Driven Security Accreditation (MDSA)
For Agile, Interconnected IT Landscapes
Ulrich Lang, PhD
ObjectSecurity LLC
530 University Ave

Palo Alto, CA, 94301, USA
+1-650-515-3391

ulrich.lang@objectsecurity.com

Rudolf Schreiner
ObjectSecurity Ltd.

St John’s Innovation Centre, Cowley Road
Cambridge CB4 0WS, UK

+44-1223-420252

rudolf.schreiner@objectsecurity.com

ABSTRACT
Assurance accreditation of agile, interconnected IT landscapes is
a great challenge, and is currently often cited as one of the show-
stoppers for the adoption of modern IT architectures (e.g. agile,
model-driven, process-led SOA and Cloud) in mission critical
domains. This paper presents Model Driven Security
Accreditation (MDSA), a novel approach for automating large
parts of the compliance and assurance accreditation management
processes (e.g. Common Criteria) to achieve reduced cost / effort,
and increased reliability / traceability. MDSA is related to Model
Driven Security (MDS), an approach that automatically generates
fine-grained technical security rules from intuitive, generalized
security policy models. MDSA automatically analyzes and
documents two main compliance aspects: 1) Does the actual
security match with the stated requirements? MDSA is a system
and method for managing and analyzing security and information
assurance requirements in reusable models, and for (mostly)
automating the verification of the traceable correspondence
between functional models, security models, and requirements
models. 2) Do any changes impact the current accreditation?
MDSA automatically identifies changes to any aspect of the
“system of systems”, and evaluates whether changes impact the
current accreditation and whether manual corrections and re-
accreditation are required.

Categories and Subject Descriptors
D.4.6 Security and Protection (K.6.5): Verification, Measurement,
Documentation, Security

General Terms
Documentation, Measurement, Security, Verification

Keywords
Model-driven security, accreditation, Common Criteria,
compliance, model-driven security accreditation, model-driven
compliance, model mapping, model merging.

1. INTRODUCTION
Conventional security and compliance accreditation of IT systems
currently involves a human security evaluator who documents
evidence and verifies whether the IT system is in line with the
requirements by using different methods, for example testing or
formal analysis. The security requirements for example state that
all data communication has to be protected for integrity (no
modification of data) and confidentiality (no disclosure of data).
The human evaluator then conventionally checks manually
whether the system really meets these requirements.
When model-driven, process-led software development
approaches are used, a good portion of the evidence is already
documented in well-defined models. This is because Model
Driven Software Engineering (MDE) [20] uses standardized
modeling language like UML, BPMN or SysML, or Domain
Specific Languages (DSLs) to describe the parts of a software
system as models, for example, of functional aspects like data
formats, services, interfaces, interactions or sequences of actions.
In MDE it is possible to directly generate large parts of the IT
systems from the models, for example source code and
configuration files. Similarly, it is possible to generate security
enforcement from security models using Model Driven Security
(MDS) [7], which is directed to the automatic generation of
machine enforceable security rules from generic, technology-
independent security policies expressed close to human thinking
(i.e. which are potentially not machine enforceable). MDS applies
the concepts of MDE to security. Using MDE (and assuming that
the model transformations work as intended), there is a high
probability that IT systems match the functional models.
Similarly, using MDS, there is a high probability that IT systems
security matches the security models (“traceability”).
It is also possible to analyze to models in order to evaluate that
the software meets specific requirements. This is often critical,
because information security is not only about implementing
security across IT systems and applications according to security
requirements. It is often also necessary to demonstrate the level of
confidence that IT system security complies with the stated
security requirements. This is called “compliance” or
“information assurance” (and involves “evaluation” and
“accreditation” processes) and can involve many factors, for
example operational environments or business domains.
Civilian and government compliance examples include best
practices, laws and regulations, e.g. ITILv3 / ISO2700x, ISMS,
COBIT for security management; privacy legislation, healthcare
legislation such as HIPAA, payment card processing such as PCI,
safety standards and regulations such as ISO 26262, DO 178B or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
WISG’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 1-60558-787-5/09/11…$10.00.

EN50128 for safety, accounting / auditing regulations such as
Sarbanes-Oxley.
More rigorous government information assurance examples
include the “Common Criteria” (CC) [1] standard ISO/IEC 15408,
a framework in which computer system users can specify their
security requirements, vendors can then implement and / or make
claims about the security attributes of their products, and testing
laboratories can evaluate the products to determine if they
actually meet the claims. In other words, CC [1] provides
assurance that the process of specification, implementation and
evaluation of a computer security product has been conducted in a
rigorous and standard compliant manner. Common Criteria
evaluations are performed by “accredited” human evaluators and
organizations. Evaluations are performed on computer security
products and systems called “Target Of Evaluation” (TOE). The
“evaluation” serves to verify claims made about the target's
security features.
This is commonly done through a manual process that involves a
number of documents: (1) A “Protection Profile” (PP) identifies
security requirements for a class of security devices; (2) A
“Security Target” (ST) identifies the security properties of the
TOE. It may refer to one or more PPs. The TOE is evaluated
against the SFRs and SARs (see below) established in its ST, no
more and no less. This allows vendors to tailor the evaluation to
accurately match the intended capabilities of their product. (3)
“Security Functional Requirements“(SFRs) specify individual
security functions which may be required by a product, e.g.
authentication or access control. (4) “Security Assurance
Requirements” (SARs) - descriptions of the measures taken
during development and evaluation of the product to assure that
the claimed security functionality works as intended. The
evaluation process tries to establish the level of confidence that
may be placed in the product's security features through quality
assurance processes; (5) “Evaluation Assurance Level” (EAL) -
the numerical rating EAL1-EAL7 describing the depth and rigor
of an evaluation. Higher EALs do not necessarily imply "better
security", they only mean that the claimed security functionality
of the TOE has been more extensively validated.

2. CHALLENGE: AGILITY & REUSE
Assurance accreditation of agile, interconnected IT landscapes is
a great challenge, and is currently often cited [5, 2] as one of the
show-stoppers for the adoption of modern IT architectures (e.g.
SOA) in mission critical domains such as defense. The problem is
that the Common Criteria methodology was originally developed
to accredit the assurance of closed and static systems which may
be reconfigured within certain and well defined limits, but do not
evolve dynamically. It was cheaper and easier to avoid agile
changes beyond what was originally provisioned for, thus
hindering progress and incremental adoption, evolution,
improvement, and optimization.
However, today’s IT architectures support agile interconnected
networked (“distributed”) applications to meet changing business
demands and evolve over the whole system life time. Example
architectures include Service Oriented Architecture (SOA), Web
2.0 and mash-ups, Cloud Computing, SaaS / PaaS, Grid
Computing. Examples for agile application development include
model-driven, process-led software development and integration
(e.g. Model Driven Architecture (MDA), Model Driven Software
Engineering (MDE), and executable Business Process

Management (BPM)). An example of an agile application aspect
is application interactions, such as SOA service interactions and
BPM interactions.
Security measures are a critical enabler for such IT architectures
and also need to support agility. There are many efforts to use
model-driven approaches for non-functional system aspects to
improve for example (1) the safety and security of systems, e.g.
using the abovementioned Model Driven Security (MDS) for
agile security policy management, (2) the assessment of risks, (3)
evaluation and accreditation, and (4) compliance with legal and
regulatory requirements.
Conventional compliance / security / accreditation methods often
fail for such dynamically changing (“agile”) IT systems. This is
because it is necessary to document that the changing system
always meets the defined security and compliance requirements.
Changes may impact the security properties of the system in such
a way that the system does not comply with the required level of
compliance / assurance anymore. In such a case it is necessary to
“re-accredit”, i.e. to analyze (i.e. “re-evaluate”) the impact of the
changes and potentially mandate corrections to the IT systems. In
addition, new vulnerabilities discovered in the system may need
to be taken into account. This is not a modification of the system,
but a change to what it is known about the system. These newly
discovered vulnerabilities might have an impact on the
accreditation or not. Today, all this is a time-consuming, manual
process which is not sufficiently fast and cheap to support the
agility of today’s IT systems. It includes documenting and
processing requirements (using informal text which hinders
automation); collecting and documenting evidence; analyzing the
evidence to identify whether the IT system and its IT security
meet the documented requirements; and manual corrections.

Unlike MDSA, the conventional manual evaluation process does
not normally tie into automated, verifiable processes such as
Model Driven Software Engineering (MDE) and / or Model
Driven Security (MDS). And even if a model-driven approach to
development and security is used, compliance related information
is conventionally simply tagged to the related model elements in
the functional model itself. This has several disadvantages:
Compliance information is not described in a generic, application
/ platform independent reusable way. Instead it has to be
described as a single, large model at the low abstraction layer of
the functional system model and bound to a specific application,
and it is not possible to easily associate specific sets of model
elements (e.g. “All information flow”) with a given compliance
element (e.g. “All information flow over public network has to be
protected”), or associate / aggregate model elements describing
accreditation related information.

3. SOLUTION: MDSA
Assurance accreditation needs to be improved to meet those
challenges. Through automation and the use of model-driven
approaches as described below, the Model Driven Security
Accreditation (MDSA) [6] approach and software outlined in this
paper enables the cost-effective, low-effort, and reliable /
traceable accreditation of agile, interconnected IT landscapes
based on model-driven, process-led approaches. The MDSA
toolset (together with usage processes and methodologies) could
be deployed as part of an integrated high-assurance development
and operation tool-suite, technology stack, and methodology (e.g.
for SOA).

MDSA is based on a combination of several related concepts,
incl.: model-driven, process-led software development, model-
driven security, model-driven compliance; automatic
documentation of supporting evidence; automatic change
detection & change acceptance; and manual re-accreditation
decision support (all described in detail below).
MDSA automatically analyses and documents two main aspects:
• Does the actual security match with the stated

requirements? MDSA is a system and method for managing
and analyzing security and information assurance
requirements in reusable models. In particular, MDSA
(mostly) automates the verification of the traceable
correspondence between the functional models, the security
models, and the requirements models, whereby the
correspondence indicates that compliance / security /
accreditation requirements defined in the requirement model
match with security objectives implemented by controls
defined by the security implementation model (i.e. the
enforced technical security rules). MDSA can also check
some consistency aspects of the requirements model, e.g.
detect some requirements conflicts.

• Do any changes impact the current accreditation? MDSA
automatically identifies changes to any aspect of the
“system of systems” (i.e. functional, security, or
information assurance requirements across multiple layers),
and evaluates whether changes impact the current
accreditation, and whether manual corrections and re-
accreditation are required. This also includes the analysis of
impacts of security vulnerabilities discovered during the life
cycle of the system.

Model Driven Security Accreditation (MDSA) can be defined as
follows: MDSA enables “agile accreditation” in a way that is
cost-effective, low-effort (i.e. partly automated), and reliable /
traceable. MDSA especially enables agile accreditation for agile,
interconnected IT landscapes based on model-driven, process-led
application development and deployment approaches, and on
standard middleware and runtime platforms (e.g. SOA). MDSA
allows the automated, formalized assignment of “undistorted”
Common Criteria assurance requirements to IT landscape specific
technical assurance control objectives in functional system
specifications. Both are expressed as formalized models and are
automatically and traceably matched. Using model-driven
security (MDS), the technical assurance control requirements are
then automatically transformed into concrete technical IT controls
enforcement & monitoring at runtime. In addition, the traceable
correspondence between technical security implementation and
the information assurance requirements is analyzed and checked.
MDSA also documents Common Criteria “supporting evidence”
based on all available design-time system / security models,
system / security artifacts, system / security model
transformations, and runtime system / security incident logs.
Furthermore, MDSA enables the automated analysis whether
changes to or newly discovered knowledge about an agile IT
landscape impact its security properties, and whether the
accreditation is still valid. The goal of MDSA is to automatically
check whether IT systems security meets its assurance
accreditation requirements, and to check the impact of changes
(incl. system, security, requirements, and newly discovered

vulnerabilities) on the accreditation. Based on so-called “change
policies”, MDSA decides whether particular system re-
configurations are within scope of the current accreditation (thus
enabling a level of IT agility) or whether manual corrections and
re-accreditation are required. MDSA also allows to assess the
impact of newly discovered security vulnerabilities, e.g.
weaknesses in crypto algorithms or buffer overflows in libraries,
on one system or multiple systems as part of an Accreditation
Management System (AMS), a central database of fine grained
accreditation information. If manual re-accreditation is required,
MDSA also acts as a decision support tool.

The following flowchart and component diagram illustrate the
main steps of the MDSA architecture:

Start

Changes?
No

Yes

Stop

Read change policy

Change
Policy

Violation?

No Yes
Decision
Support

Read models

Analyze models

Correspondence?

Yes

No

Read, normalize, store evidence

Figure 1: MDSA Architecture Flowchart

The MDSA architecture includes one or more the following parts
(implemented as software tools):

• Requirements Definition, which allows the modeling of the
security requirements and risks of a system in platform and
middleware independent Domain Specific Languages

• Risks Modeling, which allows the modeling of risks,
vulnerabilities and attack trees in platform and middleware
independent Domain Specific Languages

• Requirements Model Merging & Mapping, which
automatically, semi-automatically or manually maps
“undistorted” (i.e. system-independent, generalized) models
of accreditation / risk requirements into concrete technical
assurance controls for the particular IT landscape, using
MDSA’s so-called “model merging & mapping” approach

based on model separation (rather than tagging requirements
directly into system models). This is based on a
formalization of the accreditation criteria as models, and
forms a core part of MDSA’s Model Driven Compliance
(MDC) functionality.

• Requirements-Controls Correspondence Analysis, which
analyzes the traceable correspondence between the controls
and the stated requirements, using model-driven approaches
and the “model merging & mapping” approach.

• Evidence Collection, which automatically collects evidence
whenever a system gets designed, deployed, operated or
changed. This includes design and deployment time
evidence on all layers, and runtime evidence about
assurance accreditation relevant events, e.g. security
incidents or incorrect behavior. Runtime evidence collection
somewhat overlaps with the incident monitoring
functionality of model-driven security (e.g. in OpenPMF’s
[12] Model Driven Incident Management, MDIM). Local
compliance monitoring agents (these can be integrated with
PEPs) detect events on each protected system and transfer
alerts back to a central monitoring console. This evidence
can then be consumed by the other elements of the MDSA
architecture for ongoing accreditation related analysis and
decision support.

• Evidence Change Detection, which compares normalized
evidence versions to detect changes that could impact the
accreditation. This includes intentional changes to the
system and also newly discovered knowledge about the
system, for example new vulnerabilities.

• Change Policy Evaluation, which can analyze the identified
changes and check whether the changes are within the
accepted valid bounds (defined by MDSA “change
policies”, or also called MDSA “accreditation policies”) of
the current accreditation. If they are outside these bounds,
manual re-accreditation can be triggered. An important
aspect here is that change policies should be expressed
“undistorted” (i.e. system-unspecific, generalized) as much
as possible.

• Decision Support, which supports accreditors in the case
where the IT systems change goes beyond the valid bound
defined by the change policies. This tool provides
consolidated change evidence and corresponding
recommendations.

MDSA’s Model Driven Compliance (MDC) feature, the first part
of MDSA (top half of Fig. 1) automatically checks that the
security of the IT systems matches the stated requirements. These
stated requirements can often be predetermined.
MDSA starts when a human user or a machine initiates the
execution. Next, MDSA reads a number of models:

• one or more functional models, which describe the
functional parts of the IT systems (e.g. services,
components, applications, host machines) and how they
relate (e.g. SOA service interactions, BPM workflow
interactions). The models are defined using meta-models to
allow automated processing. The meta-models of the
models used are also read together with the models (for the

sake of simplicity, this is not shown in the figures).
Functional models should not contain any security or
requirements model elements, because of the disadvantages
outlined in the introduction and background section.
However, it is possible (but not recommended) to also
include security and requirements model elements in the
functional models.

• one or more security models that describes the security
relevant parts of the IT systems. Such security models
should be defined in a generic (i.e. independent of the
specifics of other models such as the functional model)
fashion, although definitions are possible (but not
recommended) that directly relate to the particular
functional model(s).

• one or more mapper model(s) that describe the relation
between the elements of the functional model(s), the
security model(s), and the requirements model(s). The
mapper models enable users to define generalized security
model(s) and requirement model(s) independently of the
particular functional model(s). The mapper models link
model elements across several models and meta models and
thus enable model re-use, flexibility, technology-
independence, and abstraction layer independence.

• one or more requirements models, which define the
compliance, accreditation and security requirements (again,
technology-independent and generalized).

MDSA then analyzes and checks that the IT system security
implementation traceably corresponds to the stated requirements.
Taking into account the mappings defined in the mapper model(s)
(and the functional, security, and requirements models) MDSA
relates as many model elements as possible across all read
models. The sum of all related model elements across all read
models forms a merged model (spread across several models) that
contains all the information and all correspondences between
model elements. MDSA then analyzes the correspondence of the
functional model(s) and security implementation model(s)
elements with the requirement models. MDSA decides according
to the results of this correspondence analysis whether the results
identify the correspondence or if the results identify that there is
no correspondence. For example, if the compliance model states
that communication between two services has to be protected for
confidentiality and integrity it is checked whether the
communication is sufficiently protected, e.g. that encryption and a
secure hash are applied. MDSA also documents the results of this
analysis as evidence, and makes it available to other systems or to
a human user.
MDSA can also provide the generated and documented results of
the correspondence analysis to e.g. a decision support tool that
helps human accreditors to correct non-correspondence between
requirements and actual security.
MDSA’s trust in the accreditation partly stems from the fact that
in model-driven, process-led software development approaches
there is a high degree of confidence that the operational software
traceably matches with the functional models, because the
running software has been automatically generated from the
functional models (using Model Driven Engineering, MDE). In
the same way, there is also a high degree of confidence that the
security implementation traceably matches with the security
implementation models (because MDS is used) and the

requirements (because MDSA’s MDC is used). Therefore, the
input models have a very high probability to match with the
actual implementation and operation of the running IT systems,
especially when application are not just developed, but also
deployed in a controlled fashion as part of MDE (e.g. using
orchestration approaches like BPEL or deployment models like in
the CORBA Components Model).

The other main part of MDSA (bottom half of Fig. 1), the
evidence collection and change detection / analysis, has the
following purposes:

• automatically document comprehensive evidence about the
functionality of the IT systems, about their security
implementation, and about the security requirements;

• automatically detect changes and their implications
(including consequential implications) to the IT systems and
their security across all layers, including the model layers,
the model transformations layer, and the IT systems /
security layer (see Fig. 2), and document those changes; and

• evaluate based on “change policies” whether a change voids
the current compliance / assurance certification.

To achieve this, MDSA collects various information (referred to
as “evidence”) about the current deployment and operation of the
information technology (IT) systems and about their security and
accreditation across all layers, including the model (functional
and security / compliance) layers, the model transformations
layer, and the IT systems / security layer. Such information
includes e.g. system design; security policy model; detailed
functional description; formal security requirements; how security
requirements are met; compliance / accreditation requirements
(incl. vulnerabilities, threats, threat agents, controls, control
objectives); model transformations; generated low-level security
rules and the IT infrastructure; runtime events; development life-
cycle (e.g. software development guidelines document); and
information about newly discovered vulnerabilities
MDSA processes all the collected evidence and restructures it into
a form that can be compared to previously collected evidence, i.e.
in a form that is consistent, repeatable, and without repetition of
information. Such a form can be referred to as “normalized”
evidence. Evidence is normalized if it is exactly in the same
syntax and order, even if the evidence has been collected in a
different order or with repetition or in a different syntax or by a
different collection method. Normalization can be achieved in
different ways, including well-known mapping and sorting
techniques.
MDSA then reads previously collected, normalized and stored
evidence versions. The stored evidence reader could for example
read the previous evidence (i.e. the evidence collected before the
current evidence) for the purpose of comparing it with the current
evidence to detect current changes. In other examples, the stored
evidence reader could also read any other previously collected,
normalized and stored evidence, for example to analyze the
impact of changes over time. The stored evidence reader could
also read several versions of previously collected, normalized and
stored evidence, for example, to analyze changes that happened at
a particular point in the past. MDSA then identifies the
differences between the different read normalized evidence
versions, and stores evidence that contains all identified changes

in a normalized form, as well as information about explicitly
flagged changes.
If MDSA detected changes (including indirect consequential
changes), MDSA reads a “change policy” which includes one or
more change policy rules that define which changes do or do not
impact the compliance / assurance level. It uses generic modeling
and meta-modeling methods and concepts to support the
specification of flexible/extensible change policies. MDSA then
evaluates the change policy rules for the detected changes. For
example, if a normalized change evidence element indicates a
change of an interaction between two networked applications
such as SOA services, the change policy evaluator will search for
a particular interaction related change policy rule. For example, a
rule could state that interaction changes do not impact the
compliance, security or assurance level if the security level on
both sides of a Multi-Level Security (MLS) controlled interaction
remain the same (e.g. “secret” interaction of one “secret”
application with another “secret” application). MDSA also stores
the evaluation results, including, the changes, the particular rules
applied, and the results. If MDSA detected that change policies
were violated, it provides the stored evaluation results to a human
user, e.g. within a decision support tool that helps the human user
to manually carry out necessary corrections and re-accredit the
compliance / assurance level of the IT system.
It is important to also mention that the described MDSA is
applicable to all model-driven approaches in general, because
model-driven approaches inherently provide the means to produce
the required traceable evidence about models and system artifacts,
and consequently the trust in the accreditation. Also, the concepts
of MDSA can be applied to achieving both civilian compliance
(e.g. government, critical infrastructure, healthcare, finance,
utilities etc.) and government accreditation.

4. MDSA CONCEPTS
The Model Driven Security Accreditation (MDSA) approach
outlined in this document is an innovative, patent-pending
combination of several related pre-existing and novel concepts
approaches (rather than one individual concept) – which enable
agile accreditation because of the automation achieved.
Pre-existing concepts: Some of the concepts used for MDSA are
pre-existing, i.e. have been developed independently of the
accreditation challenge to solve other challenges: Model-driven,
process led software development, and model-driven security:
Model-driven, process-led software development and integration
approaches, including Model Driven Architecture (MDA), Model
Driven Development (MDD), and executable Business Process
Management (BPM). MDD (and also “Model Driven Integration,
MDI) and BPM (for SOA orchestration) are already being
adopted and are forecasted to be mainstream by 2011-2012,
driven by large vendor pushes [19] (e.g. Microsoft, SAP, IBM,
Oracle). This is highly relevant to agile, interconnected IT
landscapes, such as Service Oriented Architecture (SOA), or
Cloud / SaaS / PaaS / Web 2.0 architectures.
Model Driven Security (MDS) applies the reasoning behind MDA
to security policy & compliance management. It is realistic to
forecast MDS adoption to “piggyback” on the adoption of model-
driven, process-led approaches (e.g. as a product add-on such as
ObjectSecurity’s OpenPMF). MDS makes agile policy
management manageable in model-driven, process-led

environments. MDS also makes it possible - among other benefits
– to automate the adjustment of security policies whenever the IT
environment gets modified or reconfigured, which reduces the
administration overhead to a minimum and improves assurance by
minimizing human errors. Model-driven security (MDS) is a
critical component of future Information Assurance (IA)
architectures, esp. for agile IT environments such as SOA. It
primarily tackles the problems “where do the fine-grained,
contextual security policy rules come from, and how do they
match with business intent”. MDS can be defined [7] as the tool
supported process of modeling security requirements at a high
level of abstraction, and using other information sources available
about the system, for example the applications functional models
(produced by other stakeholders). These inputs, which are
expressed in Domain Specific Languages (DSL) or using generic
modeling languages (e.g. UML) and frameworks (e.g. MODAF
[17], DoDAF [18]), are then analyzed to automatically generate
enforceable security rules with as little human intervention as
possible. These rules are then enforced across the entire IT
environment (e.g. through local enforcement points integrated
into the middleware or at a domain boundary) or in the security
infrastructure, for example at firewalls. Conflicts, for example
when several different policies form the input into model driven
security, can be detected by sorting and comparing rules. The
local enforcement points also deal with the monitoring of security
compliance relevant events. Model-driven security also includes
the run-time security enforcement of the policy on the protected
IT systems, dynamic policy updates and the integrated monitoring
of policy violations.
Novel concepts: The proposed MDSA approach also introduces a
number of novel (i.e. independently developed by the authors)
concepts:

• Domain Specific Languages for accreditation criteria and
risk models

• Formalized models of accreditation criteria
• Semi-automatic and tool assisted rapid requirements-to-

controls-mapping using systems and accreditation models,
• Graphical User Interfaces (GUIs) for model merging
• Automatic and tool assisted system and assurance analysis

and evaluation,
• Automatic generation and execution of system assurance

tests,
• Automatic merging of test results into accreditation

documentation,
• Automatic generation of supporting evidence

documentation,
• Change detection,
• Re-accreditation analysis based on change policies,
• Model-driven security policy generation,
• Runtime control enforcement & monitoring,
• Manual re-accreditation decision support,
• Model-driven / process-led development,
• Agile / interconnected IT landscapes.

MDSA’s first part, the Model Driven Compliance (MDC), is
based on the same model-driven approach as MDS, but applied to
mapping risk-management objectives and controls management
objectives to concrete technical controls for the particular IT
landscape for which accreditation (or compliance) need to be
achieved. This includes (1) the formalization (in models) of the
different artifacts involved (such as assets / vulnerabilities / risks /
control objectives / controls assignment) and the relation between
the different aspects and the system specification. It also involves
(2) an automatic or semi-automatic process to map control
objectives to concrete controls for each system artifact and to
resolve conflicts (by exploiting known interdependencies). And
(3) the automatic checking that the controls traceably correspond
to the stated requirements. MDC is based on a correspondence
between the elements of:

• Risk models (describing for example assets,
vulnerabilities and control objectives) or compliance
models (describing for example assets and compliance
regulations/modules to apply) on one hand, and

• Design/runtime models (describing functional artifacts
and control implementations) on the hand side.

The second part of MDSA deals with automatic documentation
and change detection / analysis: Thanks to the usage of model-
driven, process-led development and model-driven security, most
of the high-level / low-level system and security specifications are
available in a formalized, normalized form that can automatically
be turned into supporting evidence and system documentation.
Furthermore, the model transformations for development and
security enable the evidence documentation that there is a
traceable correspondence between the high-level and low-level
specifications and software artifacts. Run-time evidence
(especially security incident monitoring) is also readily available
and useful for ongoing analysis and improvement / optimization.
The formalized evidence allows the detection of changes and their
concrete impact across the IT landscape. Change policies, which
express which changes do not alter the accreditation / compliance
targets, can then be applied to automatically evaluate & accept
whether changes impact the current accreditation (thus enabling
agility).
Evidence about the detected change and the identified crossing of
change policy boundaries, as well as the other evidence
mentioned above, accreditors can be presented in a consolidated
manner to human accreditors through a decision support tool.
Such a tool can also act as an expert system and provide concrete
contextual guidance for the particular situation identified. It
includes both intentional changes and the analysis of the impact
of newly discovered knowledge about the system, e.g.
vulnerabilities in libraries, services or components..

4.1 Additional considerations
1) Cost-Benefits Justification: Model-driven, process-led
approaches are sometimes still criticized because of the perceived
extra effort they require to specify models. This criticism is
generally debatable because good software needs sound
architectural design. The criticism is specifically not valid for IT
landscapes that need to be accredited, because accreditation
requires structured system documentation anyway, and software
modeling is currently accepted best practice to specify system

functionality. In fact conceptually, modeling systems does not
actually add to the total cost of policy management. This is
because if security administrators have to manually specify
detailed technical security rules, they are effectively also
specifying the security related aspects of the system specification
within their policy administration tool. Model-driven security
simply re-uses this information (which often make up the greater
part of security policy rules) from models specified by other
stakeholders (and / or tools) who know applications and
workflows better anyway (i.e. application developers / integrators,
and process modelers). This argument shows that, even after only
a short while in operation, the total cost of MDS is very likely to
be significantly lower than traditional policy management without
MDS. In addition, the quality of protection is also improved,
reducing the risk of security incidents, and also their damage and
the related costs for response. The same argument applies to
MDSA. SOA and related modern IT architectural approaches are
also sometimes criticized because of the added cost and the added
software complexity they introduce. However, that up-front
investment needs to be compared to the cost of not adopting
modern IT architectural approaches, such as (1) maintenance cost
/ effort explosion, (2) integration hurdles / costs, (3) costs because
re-use is not possible, (4) lost business opportunities because the
lack of IT agility prevents the offering improved services to the
business side etc., and (5) investments are siloed and stove-piped,
and thus hard to “future-proof”.
2) Blurred Boundary – Design Time vs. Runtime: Traditional
accreditation is done at the system lifecycle stages prior to
operational runtime. The primary purpose in general is to approve
a system’s assurance for its intended operational use. The implied
assumption is that systems do not change after accreditation, and
if they do, manual re-accreditation is necessary. However, today’s
agile, interconnected IT landscapes blur that boundary between
design time and runtime: IT landscapes dynamically evolve, i.e.
dynamic system changes can occur frequently during runtime
(e.g. BPM workflow re-orchestration). This blurs the clear
“waterfall” process and the boundary between design-time and
runtime which traditional Common Criteria assumes. MDSA
therefore needs to collect and analyze both design time (i.e. about
the system, the security policy, the accreditation requirements, the
“traceability” of the inner workings of the model transformations)
and ongoing at runtime (i.e. evidence about runtime activity of the
IT landscape). Runtime analysis is typically not part of
traditional accreditation (e.g. Common Criteria).
3) Need for Risk- and Control-Based Approaches: A pure risk-
based approach or a pure control-based approach to accreditation
(and civilian compliance) is not enough [9]. A combination of
both approaches, and a traceable mapping between risk-based and
control-based approaches is needed, i.e. the identification of risks,
and its (automatic) mapping to controls. MDSA’s MDC therefore
partly acts as a bridge between a risk-based approach and MDS,
which is currently purely control-based (i.e. concerned with how
to concretely implement high-level control objectives across the
IT landscape).
4) “Traceable Correspondence”: Because MDSA’s evidence
documentation & accreditation support is based on models used to
build / deploy IT landscapes and security policies, MDSA
inherently ensures to a high degree of confidence that the
accreditation traceably corresponds to the actual IT landscape (i.e.
ToE / ST documentation inherently and traceably matches with

reality). MDSA also takes runtime incident monitoring into
account, which enables continuous accreditation compliance
monitoring.
5) Separation of Concerns: A particular feature of MDSA is that it
allows the separation of concerns between involved stakeholders.
In particular, thanks to its model-merging concept, it allows for
example unclassified, general-purpose Common Criteria “change
policy” modeling and MDSA toolset development and the
accreditation of platforms and unclassified services and
components, while the application of the generic models and tools
to specific (classified) systems during accreditation is done by
cleared personnel. Both views can be linked using the
abovementioned model mapping and merging technique. The
general concept of using modeling techniques for a security
analysis of systems is not a new approach, it was for example
proposed by Jürjens in SecUML, where UML annotations were
used to add security related information to UML models [4].
Unlike MDSA (and MDS), such other approaches have the
disadvantage that they directly couple the security information to
the functional model of the application and also to the meta model
describing it. In addition, such approaches allowed to add security
related information to the individual elements of the functional
model, but did not allow expressing relationships between
security annotations or to cluster elements with the same security
attributes. An obvious solution would be an extension of the
functional meta model. Unfortunately, this raises many issues. For
example, in contradiction to the concept of separation of concerns
it again couples functional and non functional aspects in a single
model, it makes already very complex functional meta models
like UML even more complex, and it does not allow reuse of
security information in different meta models. To solve this, the
authors’ MDSA (and MDS) approach separates functional and
security models, both described in their own, adequate meta
models.

5. MDSA PROTOTYPE
MDSA is currently at the concept exploration phase (i.e. patented,
and prototypes built). The goal of the current prototype was the
practical evaluation of the overall concepts of MDSA in a
simplified, but still realistic environment, with special focus on
the integration of MDSA into MDD and MDS. The authors
extended an existing MDS/MDD tool chain by an additional
accreditation model describing vulnerabilities, threats and
required security functionality. From this new model and the
already existing models of the MDD/MDS tool chain, the
functional model and the compliance model defining the high
level security, we are able to generate the security configuration
and, in parallel, the related accreditation evidence, e.g. whether
the high level security policy is in accordance to the required
security functionality. An analysis of changes is not yet part of
the prototype, but experiences from another projects related to
safety demonstrated that the approach of change policies is
feasible.

As the authors have learned in the past, many solutions in
different domains work very well for demo applications with the
complexity of HelloWorld. Unfortunately, the evaluation of a
technology based on such trivial demo applications says little
about the technology’s suitability for solving the complex
problems of real world applications. Therefore, a non trivial demo
was chosen for the MDSA prototype, namely ObjectSecurity’s

SimulateWorld / SWIM system, the prototype of a secure System
Wide Information Management (SWIM) system based on a
distributed, component based simulation of air and ground traffic
around San Francisco airport.
The SimulateWorld / SWIM system was initially developed for
the evaluation of security systems in complex, heterogeneous
environment [8], and uses different communications paradigms
like request / reply and information flow and also different
middleware technologies:

Figure 2: Part of the SWIM Prototype Model

The SimulateWorld / SWIM prototype consists of multiple
components implementing specific simulators (aircrafts, ground
vehicles, ships), a central simulation infrastructure to establish a
shared “world” and the SWIM application on top of it. The
complete simulation infrastructure is implemented in C++ using
the SecureMiddleware CORBA Components Model
implementation as runtime platform with Qedo [14] as CCM
implementation, MICO [10] as underlying ORB and the
ObjectWall [11] IIOP proxy for domain boundary traversal. On
top of the simulation infrastructure, our SWIM prototype is
located. It consists of components for information exchange and
management, Controller Working Positions and other displays.
This SWIM prototype is implemented mostly in C++ and Java,
using different middleware technologies, for example the OMG
Data Distribution Service (DDS), a Java Messaging Service
(JMS) implementation and the Advanced Message Queuing
Protocol (AMQP) for information flow, and Web Services / EJB
(implemented with Glassfish). The Glassfish Java application
server also implements data persistency and also provides a web
interface to some information, for example airport flight data.
For the protection of most parts of the system ObjectSecurity’s
OpenPMF [12] policy management framework is used. It allows
the central definition and management of security policies in the
distributed systems, and also the central monitoring of policy
violations.
For the development of the system, which mainly involved the
generation of software artifacts and of the security policies, the
authors used Model Driven Development (MDD) and Model
Driven Security. The MDD / MDS / MDSA tool chain is

implemented using the Eclipse Modeling Framework (EMF) and
OpenArchitectureWare (OAW). We use the ecore meta meta
model to describe all meta models and proprietary Domain
Specific Languages for modeling the system. Currently, the
models are edited using the standard EMF reflective editor. For
the model transformations (M2T) we used the Xtext language of
the OAW framework.
During the implementation and evaluation of the MDSA
prototype the authors had two main objectives: Firstly check
whether it is possible to model compliance and security
requirements, and to check whether they are met in the system of
the full life cycle. And secondly, check whether it is possible to
do fine grained security evaluations using model driven
techniques. An additional goal was to keep the prototype as
independent as possible from the functional meta models and the
target application, in order to allow the platform independent
definition of vulnerabilities, risks, and compliance and security
requirements.
Separation of Models and Concerns: To achieve the
abovementioned model separation, the authors developed an
ElementMapper. The ElementMapper supports the flexible
mapping of elements of different models described in different
meta models at the same or at different layers of abstraction. This
decouples the different models, allows the “translation” of terms
and descriptors and supports clustering of elements. It allows the
description of different views of the system at the right level of
abstraction and using the right term for specific aspects and
views. Therefore, the ElementMapper allows the definition of the
optimal vocabulary for the description of the system for a given
task. It also allows adding attributes to the model elements of the
mapper model and the definition of relationships between the
elements. The mapping algorithm supports one to one, one to
many or many to one mappings and is based on flexible,
declarative descriptors supporting logical operations of arbitrary
model elements and meta model elements. The mapping is also
bi-directional, allowing a bi-directional navigation between
models.
In the prototype, the authors defined the mapping mainly based on
the meta types of the functional model. Therefore, all elements of
the same meta type are treated in the same way. It is also possible
to choose other model elements like names or attributes as well,
and also logical combinations of them. This allows the definition
of mappings for individual elements, for example specific
services, or to cluster elements. It is used in the Attack Tree
Analysis (ATA) model, where we define a mapping based on
component instances. This allows to express security, compliance,
accreditation or risk related information for specific instances of
the system. In our prototype we define a simple attack tree model
for the “Radar” component instance.
Security and Compliance Models and Evidence Generation: The
Compliance Model describes the high level security policy of the
system. It is used for the generation of the low level security rules
and configurations. The Compliance Model defines the Assets,
Actors and Actions in the system and also the
ComplianceModules they have to be compliant to in a generic,
platform independent way. A ComplianceModule, for example
InformationFlowIntegrity or ServiceImplementationProtection,
consists of one or more Controls like Authentication, transport
layer encryption or OpenPMF AccessControl and the security

objectives they implement. E.g. the Asset described by abstract
name “ServiceImplementationInstance” has to be protected by the
ComplianceModule ServiceImplementationProtection.
The CommonCriteria model allows the definition of functional
security requirements for a system, e.g. to define that a service
interface has to be protected in a specific way. Similar to the
Compliance model, the CommonCriteria model includes all
abstract Assets of the system. For each Asset, there is a list of
vulnerabilities, e.g. Asset ServiceImplementationInstance has the
Vulnerabilities UnauthenticatedServiceAccess, Interception,
Spoofing, ServiceBufferOverflow and UnauthorizedAccess.
Vulnerabilities can only be exploited under specific conditions.
For example, a ThreatAgent without access to a service cannot
exploit a buffer overflow in the implementation of this service.
Vulnerabilities are countered by one or more Controls. Controls
are equivalent to the CC Security Functional Components (SFC)
including for example authentication, message protection or audit
functionality. The definition of the controls describes the
functionality and which security objective this functionality
enforces. For the sake of simplicity, we used a simple, flat
structure of controls without classes and families. In addition, it is
also possible to make assumptions about the system and its
environment, e.g. to state that specific vulnerabilities are not
relevant.
The MDSA model transformations now compare, using fully
automatic matching, the required and the provided security
functionality under consideration of specific assumptions, in order
to check whether the security objectives are met. From this
matching process, evidence and documentation are generated,
similar to large parts of a Common Criteria evaluation report.
Risk Models and Risk Analysis: Risk models are used to model
risk related information about a system, for example for Attack
Tree Analysis. This includes both information about assets threat
agents, vulnerabilities, security objectives, controls and their
functionality and the objectives they are able to enforce, and
attack trees. The related models are defined for the runtime
platform, e.g. the middleware, and the application on top of it, for
example attack trees to break the access control or the message
protection of the system.
From the functional, compliance and attack tree models we were
able to generate fine grained risk analysis documents describing
the risk of the system in the actual configuration. It also was
possible to analyze the impact of newly discovered knowledge
about the system, e.g. about new security vulnerabilities.
The attack tree models were very complex, but it was possible to
reuse the middleware related parts for different applications based
on the same middleware. This greatly simplified the attack tree
analysis process, because today's applications strongly depend on
underlying runtime platforms and their security mechanisms.
Only a small part of the code (expressed in Lines Of Code, LoC)
and therefore also of the possible attacks is application specific.
Automatic Generation of Model Transformations: A key part of
MDS/MDSA are the model transformations that implement the
generation of security policies and accreditation evidence. Only if
it is possible to prove that the transformations are correct and that
the transformation generating the policy behaves exactly like the
generation generating the accreditation evidence, a sufficient level
of trust in the general approach of MDS/MDSA can be

established. At the first glance, this seems to be difficult, esp.
because the transformations depend on the functional meta model
used and some parts of the transformations, e.g. the model
merger, are somewhat complex and hard to understand. The more
complex the functional model, the more complex and harder to
understand the transformation. This especially plays an important
role for very complex meta models like MODAF. In the current
prototype, the transformations were manually written, which
required a lot of experience, care and sound testing to establish
trust in the correctness of the transformations and their results.
Careful analysis showed that the most difficult and error prone
parts of the transformations can be directly generated from the
functional model. In fact first results indicate that the
transformations can be completely generated from the functional
model and a high level security model, but this was not further
investigated for now.
The current MDSA prototype results show that the concepts it is
based on are valid and useful for the accreditation of a realistic,
non trivial example, esp. the integration of MDSA with a
functional tool chain and runtime, and with MDS. It allows a well
structured definition of the compliance and accreditation
requirements, their enforcement, and the generation of
documentation and evidence showing that the system is really
protected as required. Whenever the system is modified, the
protection and documentation stay exactly in line with the defined
requirements. If compliance definition and accreditation
requirements are not in line, then this is clearly indicated in the
generated documentation and evidence. We therefore expect that
a full implementation of MDSA based on a formalization of the
Common Criteria will achieve its main objective, a great
improvement of accreditation of agile systems, as well.
The model driven Attack Tree Analysis (ATA) turned out to be a
very valuable, but complex tool for the security evaluation of
complex systems. It supports analyzing a large number of risks
and how to mitigate them. Its main value lies in the analysis of
middleware based systems. Here it allows the definition and reuse
of “ATA profiles” for specific middleware platforms and security
mechanisms, which then can be reused for the security assessment
of systems based on these platforms and mechanisms, greatly
reducing the accreditation effort. Such fine grained ATA also
allows to estimate the impact of new security vulnerabilities in
operational systems. The integration of ATA into MDD and MDS
also ensures that the ATA is always in line with the actual system
over the whole life cycle. In contrast to the above described
generation of evidence and documentation, ATA urgently
requires an interactive and graphical tool, using the reflective tree
editor for model definition and the generation of ATA output in
workflows was less than optimal.
In the implementation of the MDSA prototype, we used some
advanced technical concepts, for example the ElementMapper,
editing and merging of multiple models, access mode independent
assets and so on. The practical implementation of these concepts
was sometimes technically challenging, e.g. mainly because of
the lack of documentation and adequate tools. But again, these
concepts turned out to be valuable. For example, the
ElementMapper concept allows to formalize the Common Criteria
in platform and mechanism independent models.

6. RELATED WORK
There is some related publicly available scientific research where
model-driven security is applied to accreditation [3, 15]. Thanks
to its integration with commercially available, well-established
model-driven approaches, it is possible that the proposed MDSA
approach is closer towards an implementable, practical solution
than much of the previous scientific work. Furthermore it is
possible that classified work on model-driven security
accreditation approaches exist, but the authors are not aware of
any. No products seem to be publicly available today to support
agile accreditation in the proposed way for agile, interconnected
IT landscapes such as SOA.

7. CONCLUSION
Assurance accreditation of agile, interconnected IT landscapes is
a great challenge. This paper presented Model Driven Security
Accreditation (MDSA), a novel approach for automating large
parts of the compliance and assurance accreditation management
processes, e.g. for Common Criteria. MDSA uses model-driven
approaches to automatically analyze and documents two main
aspects related to compliance and information assurance
accreditation: 1) Does the actual security match with the stated
requirements? 2) Do any changes impact the current
accreditation? MDSA enables the cost-effective, low-effort, and
reliable / traceable accreditation of agile, interconnected IT
landscapes with applications built, operated, and secured using
model-driven, process-led approaches (Model Driven Software
Engineering, MDE, and Model Driven Security, MDS). The
presented prototype implementation shows that model-driven
approaches as used in MDSA can automate a large part of the
conventionally manual evaluation and accreditation process (e.g.
Common Criteria). The prototype shows that the MDSA
automation approach saves human effort and supports dynamic
changes to the (model-driven, process-led) IT landscape.

8. ACKNOWLEDGMENTS
Our thanks to UK Ministry of Defence (MoD) Centre for Defence
Enterprise (CDE) for funding ObjectSecurity for the development
of an MDSA concept exploration document deliverable. Thanks
also to David Chizmadia and John Mullen from Promia, Inc, who
provided useful suggestions early on during the concept
exploration; and to Prof. Dieter Gollmann (TU Hamburg-
Harburg) for reviewing a late draft of this paper.

9. REFERENCES
[1] CCRA, Common Criteria v3., 2006.

www.commoncriteriaportal.org
[2] Davis, M. et al. SOA Information Assurance Concerns

(presentation), ISSA / The Security Network. 2008.
http://www.sdissa.org/

[3] Hallberg, J., Bengtsson, J., and Hallberg, N. Modeling and
Assessment of Systems Security. 2008. Proceedings of

MODSEC2008.
http://www.comp.lancs.ac.uk/modsec/papers/modsec08_sub
mission_6.pdf

[4] Jürjens, J., Secure Systems Development with UML. 2004.
Springer.

[5] Lang, U. and Schreiner, R. SOA Security Concerns Study.
UK Cyber Security Knowledge Transfer Network. 2008.
www.secure-soa.org

[6] Lang, U. and Schreiner, R. Model driven compliance,
accreditation, and monitoring. PCT Patent Application No.
PCT/US09/46964, 2008

[7] Lang, U. Model Driven Security Blog. 2009.
www.modeldrivensecurity.org

[8] Lang, Ulrich and Schreiner, Rudolf: Integrated IT Security:
Air-Traffic Management Case Study. ISSE 2005 Conference
Budapest, Springer, 2005

[9] McCuaig, B. Enterprise Risk Management Assessment
Guide, Thomson Reuters, 2009.

[10] MICO Team. MICO CORBA website. 2009. www.mico.org
[11] ObjectSecurity. ObjectWall information webpage. 2009.

www.objectwall.com
[12] ObjectSecurity. OpenPMF information webpage. 2009.

www.openpmf.com
[13] ObjectSecurity. SimulateWorld information webpage. 2009.

www.simulateworld.com
[14] Qedo Team. Qedo CCM website. 2009. www.qedo.org
[15] Saeki, M. and Kaiya, H. Using Common Criteria as Reusable

Knowledge in Security Requirements Elicitation. 2008.
Proceedings of MODSEC2008.
http://www.comp.lancs.ac.uk/modsec/papers/modsec08_sub
mission_9.pdf

[16] Schreiner, R, Lang, U, Ritter, T, Reznik, J, Building Secure
and Interoperable ATC Systems, Eurocontrol INO Workshop
2006

[17] UK Ministry of Defence. The MOD Architecture Framework
Version 1.2. 2008. www.modaf.com

[18] US Department of Defense. Department of Defense
Architecture Framework (DoDAF). 2007.
www.architectureframework.com/dodaf

[19] Wagner, R. et al. (Gartner, Inc.). Cool Vendors in
Application Security and Authentication, 2008"
(G00156005). 2008. www.gartner.com

[20] Watson, A., and al. Object Management Group Overview
and guide to OMG's architecture, 2003. www.omg.org/mda,
document omg/03-06-01 (MDA Guide V1.0.1)

