
September/October 2010 www.stsc.hill.af.mil 21

Effectively addressing software security
requires adequately balancing the

secure development and the secure opera-
tions domains (see the mechanisms listed
in Table 1).

The objective of security in develop-
ment is to prevent security issues in the
software causing vulnerability. In the best
case, this means preventing such security
issues from ever entering the software to
begin with. This best-case approach is dri-
ven by activities such as effective security
training, security policy definition, security
requirements specification and review,
secure architecture and design, and archi-
tectural risk analysis. In the worst case, this
means at least preventing such security
issues from ever being fielded into live sys-
tems. This later life-cycle approach is typ-
ically driven by activities such as secure
code analysis, security testing, and pene-
tration testing.

The objective of security in operations
is to prevent security issues in deployed
systems by securing their infrastructure,
configuration, and use. So, the ultimate
goal would be to have all operating soft-
ware totally free from vulnerability and
fully secure. Given the complexities
involved in today’s software and the ever-
changing threat landscape, the reality is
that no software can ever be presumed as
fully secure and will typically be under ongo-
ing and consistent attack. Beyond the ini-
tial security engineering of software oper-
ational deployment, the bulk of secure
software operations is about continuous
situational awareness and incident
response. Recognizing real-world practi-
calities, it is focused on answering the
foundational, ongoing secure operations
questions:
• Are we being attacked? (Were we

attacked?)
• How are we being attacked?
• What is the objective of the attack?
• What is our exposure?
• Who is attacking us?
• What should we do to protect against

these attacks in the future?

The commonality between the secure
development and secure operations
domains is the central role of understand-
ing how adversaries attack software. While
both domains have a need to understand
how software is attacked, the specific
needs of each domain differ in level of
abstraction and in purpose—but in a syn-
ergistic fashion. The secure development
domain needs to understand the attacker’s
perspective in abstract terms in order to
improve security across a wide range of
contexts, rather than individual instances.
The secure operations domain needs to
understand the attacker’s specific varia-
tions of behavior in gory detail in order to
recognize it, understand it, estimate its
effect, and plan its mitigation. Due to the
reciprocal balance between the top-down
perspective of secure development and
the bottom-up perspective of secure oper-
ations, there is an opportunity for each
domain to address its own requirements in
such a way that also provides value to the
other’s primary focus (see Figure 1, next
page).

Given the differing requirements
between the two domains (to characterize
attacks and potentially exchange this
information), a flexible mechanism is
required to capture, describe, and share
knowledge about common patterns of
attack. One such mechanism is the attack

pattern object as specified and leveraged
by the Common Attack Pattern Enumer-
ation and Classification (CAPEC), as out-
lined at <http://capec.mitre.org>. CAPEC
is a publicly available catalog of attack pat-
terns along with a comprehensive schema
and classification taxonomy intended to
form a standard mechanism for identify-
ing, collecting, refining, and sharing attack
patterns among the software community.
Established in 2000, the attack pattern
concept represents a description of com-
mon attack approaches abstracted from a
set of known real-world exploits. While
this source of raw data comes primarily
from the secure operations domain, attack
patterns today are primarily a construct
used by the secure development commu-
nity to aid software developers in improv-
ing the assurance profile of their software.

In this role, attack patterns offer the
secure development community unique
value in several areas such as:
• Representing abuse cases (how an

attacker would intentionally abuse a
software system) during requirements
elicitation, specification, and review.

• Mapping identified threats to the soft-
ware’s modeled attack surface as part
of threat modeling activities during
architecture and design.

• Guiding and prioritizing secure code
analysis during implementation. This

The Balance of Secure Development and Secure
Operations in the Software Security Equation

Software security is about reducing the risk that software poses to those who use it or are affected by it. This requires thought
and action more than simply at the point of development or use. It requires a more holistic approach, balancing secure devel-
opment and secure operations. The bad news is that these two capable domains typically do not interact much or understand
each other. The good news is that there are active ongoing efforts focused on addressing this gap.

Sean Barnum
The MITRE Corporation

• Effective Security Training

• Forensics

• Anti-Tamper Mechanisms

• Secure Architecture and Design • Intrusion Detection Systems

• Security Requirements • Proxies

• Security Policy • Firewalls

• Secure Coding • Intrusion Prevention Systems

• Security Testing • Real-Time Data Monitoring

• Penetration Testing • Operational Monitoring and Control

• Risk Management • Incident Response

• Secure Configurations

Mechanisms of Secure Development Mechanisms of Secure Operations

Table 1: Mechanisms for Secure Development and Operations

Game-Changing Tools and Practices

22 CROSSTALK The Journal of Defense Software Engineering September/October 2010

includes identifying specific high-risk
areas requiring greater analysis rigor as
well as the most relevant weaknesses
to look for.

• Identifying, specifying, and prioritizing
security test cases.

• Serving as attack templates for pene-
tration testing and objective persona
descriptors for red team penetration
testing.
The future potential for CAPEC

attack patterns lies beyond their evolving
and continued use within the secure devel-
opment community. The secure opera-
tions community can utilize CAPEC to
assist in situational awareness of deployed
systems under attack and aid in response
and mitigation. Several characteristics of
attack patterns make them relevant for the
secure operations community:
• Attack patterns provide high-level

rather than simply low-level detailed
patterns of attacks against software.

• Much of secure operations is about
analyzing low-level activity for patterns
and composing them into higher levels
of abstraction to detect, identify, and
respond to attacks.

• Software assurance attack patterns
provide a top-down, high-level context
for both the method and the intent of
attacks.

• Efforts are currently under way to for-
malize the CAPEC attack pattern
schema in order to provide adequate
detail of attacks for aligning and inte-
grating their context with bottom-up
incident analysis characterizations.
Attack patterns offer a unique and

practical bridge between the two domains,
as shown in Figure 2.

Using attack patterns makes it possible
for the secure development domain to
leverage significant value from secure
operations knowledge, enabling them to:
• Understand the real-world frequency

and success of various types of
attacks.

• Identify and prioritize relevant attack
patterns.

• Identify and prioritize the most critical
weaknesses to avoid.

• Identify new patterns and variations of
attack.
Through the use of attack patterns, it

is also possible for the secure operations
domain to leverage significant value from
secure development knowledge. This
enables those in the secure operations
domain to provide appropriate context to
help answer the foundational secure oper-
ations questions (see Table 2).

One of the maturation paths currently
under way for CAPEC involves integrat-

Attack

Most effective when continuum is integrated

Prevent Detect Identify Respond

Secure
Operations

Secure
Development

Attack Patterns

Attack Patterns

Secure Development Secure Operations

Figure 2: Attack Patterns Bridge Secure Development and Operations

Mechanisms of Secure Development Mechanisms of Secure Operations

Secure Architecture and Design Intrusion Detection Systems

Security Requirements Proxies

Security Policy Firewalls

Effective Security Training Secure Configurations

Secure Coding Intrusion Prevention Systems

Security Testing

Penetration Testing

Risk Management

Real-Time Data Monitoring

Operational Monitoring and Control

Incident Response

Forensics

Question Role of Attack Patterns

How are we being attacked? Attack patterns offer detailed structured descriptions
of common attacker behavior to help interpret
observed operational data and determine exactly
what sort of attack is occurring.

Are we being attacked?
(Were we attacked?)

Attack patterns offer structured descriptions of
common attacker behaviors to help interpret observed
operational data and determine its innocent or
malicious intent.

What is the objective of the attack? Elements of attack patterns outlining attacker
motivation and potential attack effects can be
leveraged to help map observed attack behaviors to
potential attacker intent.

What is our exposure? The structure detail and weakness mapping of attack
patterns can provide guidance in where to look and
what to look for when certain attack pattern behaviors
are observed.

Who is attacking us? Attack pattern threat characterization and detailed
attack execution flow can provide a framework for
organizing real-world attack data to assist in
attribution.

What should we do to prevent against
attacks in the future?

Attack patterns offer prescriptive guidance on solutions
and mitigation approaches that can be effective in
improving the resistance tolerance and/or resilience
to instances of a given pattern of attack.

Table 2: Attack Patterns Help Answer Questions Regarding Secure Operations

Attack

Most effective when continuum is integrated

Prevent Detect Identify Respond

Secure
Operations

Secure
Development

Attack Patterns

Attack Patterns

Secure Development Secure Operations

Figure 1: How Secure Development and Operations Can Work Together

The Balance of Secure Development and Secure Operations in the Software Security Equation

September/October 2010 www.stsc.hill.af.mil 23

ing and refining lower-level attack attribut-
es and characteristics to better support
automatable integration of both domains.
So far, this effort has been focused on
enhancing attack pattern descriptions with
greater levels of attack execution flow
detail and on the addition of two new
constructs: Target_Attack_Surfaces and
Observables.

The Target_Attack_Surfaces con-
struct is intended to give a structured
characterization of the relevant portions
of the targeted software that an attack is

attempting to exploit. This sort of detail
can be valuable within an operational con-
text, assisting in attack detection, identifi-
cation, and characterization through map-
ping of observed effects on target soft-
ware assets and resources. The current
draft schema (see Figure 3) focuses on
characterizing functional services, proto-
cols, command structures, etc. Future
schema revisions should extend this con-
ceptual construct to address a broader set
of attack surface characteristics.

The Observables construct is intend-

ed to capture and characterize events or
properties that are observable in the oper-
ational domain. These observable events
or properties can be used to adorn the
appropriate portions of the attack pat-
terns in order to tie the logical pattern
constructs to real-world evidence of their
occurrence or presence. This construct
has the potential for being the most
important bridge between the two
domains, as it enables the alignment of
the low-level aggregate mapping of
observables that occurs in the operations

Figure 3: CAPEC - High-Level Attack Surface Draft Schema (Figures 3 and 4 were created with Altova XMLSpy)

Figure 4: CAPEC - Observables Draft Schema

Game-Changing Tools and Practices

24 CROSSTALK The Journal of Defense Software Engineering September/October 2010

domain to the higher-level abstractions of
attacker methodology, motivation, and
capability that exist in the development
domain. By capturing them in a structured
fashion, the intent is to enable future
potential for detailed automatable map-
ping and analysis heuristics.

The current Observables draft schema
(see Figure 4 on the previous page) adorns
the Attack_Step, Attack_Step_Tech-
nique,Attack_Step Outcome, and Attack
_Step Security_Control elements of the
attack pattern schema. It focuses on char-
acterizing specific observable measures,
their value, their sensor context, and how
accurate or easy to obfuscate they are.
Future schema revisions should flesh out

the construct to cover other relevant
dimensions. Changes will be based on
input and collaboration from the opera-
tions community and other aligned knowl-
edge standardization efforts needing this
construct (e.g., Common Event Enumer-
ation [CEE] and Malware Attribute
Enumeration and Characterization
[MAEC]).

People interested in learning more
about CAPEC, CEE, MAEC, and other
related knowledge standardization efforts
can gain better insight and join in the
community collaboration efforts by going
to the Making Security Measureable Web
site <http://msm.mitre.org> and the
Software Assurance Community Re-

sources and Information Clearinghouse
<https://buildsecurityin.uscert.gov/swa>.

Summary
Effective software security requires a bal-
anced approach between secure develop-
ment and secure operations. The com-
monality between these two domains is
the central role of understanding how
adversaries attack software. CAPEC attack
patterns offer a mechanism for structured
characterization of common attacks that
enable a useful exchange of information
relevant to both domains, also aligning
low-level observations to high-level con-
texts for mutual benefit.

CAPEC is currently a resource lever-
aged primarily by the secure development
community, but there is an opportunity
and a strong need for increased collabora-
tion from the secure operations communi-
ty. It will help shape and refine CAPEC to
more effectively serve both communities,
potentially acting as an integrating bridge
to eventually yield a more holistic software
security capability.

We encourage readers within both
communities to become actively involved
and lend their knowledge and voices to
our unifying efforts.u

About the Author

Sean Barnum is a soft-
ware assurance principal
at The MITRE Corpo-
ration, serving as a
thought leader and se-
nior advisor on software

assurance and cybersecurity projects. He
has more than 20 years of experience in
the software industry in the areas of
development, software quality assur-
ance, quality management, process
architecture and improvement, knowl-
edge management, and security. He is
involved in numerous knowledge stan-
dards-defining efforts, including Com-
mon Weakness Enumeration, CAPEC,
and other elements of software assur-
ance programs for the DHS, DoD, and
the National Institute of Standards and
Technology. He is co-author of the
book “Software Security Engineering: A
Guide for Project Managers.”

Phone: (703) 473-8262
E-mail: sbarnum@mitre.org

The DoD—along with its supporting defense industry—has identified cybersecurity
as one of its top priorities today and going forward. The software security portion of
this battle is currently being fought on two fronts, secure development and secure
operations, with little coordination between the two. This article discusses the objec-
tives and activities unique to each of these areas as well as some of their shared com-
monality in the relevance of understanding the attacker’s perspective. Most impor-
tantly, it introduces attack patterns as a resource that characterizes this commonality
and offers a practical and actionable bridge for coordination and collaboration
between the secure development and secure operations communities. An under-
standing of attack patterns and their relevance to a unified approach to software secu-
rity should be requisite knowledge for all those working in DoD software.

Software Defense Application

