
September/October 2010 www.stsc.hill.af.mil 9

Commercial software is not defect-free.
There are any common defects such

as improper input validation, as defined by
the Common Weakness Enumeration
(CWE), The MITRE Corporation’s list of
software weakness types [1]. These weak-
nesses can be readily exploited by unau-
thorized parties to alter the security prop-
erties and functionality of software for
malicious intent. MITRE, in collaboration
with the SANS Institute, publishes a year-
ly list of the Top 25 Most Dangerous
Programming Errors [2]. Such defects can
be accidentally or intentionally inserted
into software, and subsequent acquirers
and users have limited ways of finding and
correcting these defects to avoid exploita-
tion.

A report by application security com-
pany Veracode [3] draws on the analysis of
billions of lines of code and thousands of
applications that they have analyzed. Their
overall finding is that most software is very
insecure. Regardless of software origin, 58
percent of all applications submitted for
verification did not achieve an acceptable
security score for its assurance level upon
first submission to Veracode for testing.
Table 1 has the results (by source) of soft-
ware tested against the 2009 CWE/SANS
Institute Top 25 list [4]; it shows the per-
centage of submitted software that passed
the security test on the first trial. As 60 to
70 percent of the tested software failed
against easily remedied weaknesses, one of
Veracode’s findings was the lack of devel-
oper education and motivation on secure
coding.

Software Supply Chain
Complexity
There has been extensive analysis of sup-
ply chains for delivery of physical materi-
al, an analysis based on data collection
over decades of practice. The lack of an
equivalent base of practice and data col-
lection for software has severely limited
the analysis and response to software sup-
ply chain risks.

Most supply chains are not a single link
between an acquirer and a supplier. A more
complex supply chain (such as that shown
in Figure 1 on the next page) can involve a
combination of internal development, out-
sourced development, multiple commercial
suppliers, and legacy system usage. The
composite system inherits the risk of a soft-
ware assurance (SwA) failure at any point in
such a supply chain. The acquirer and the
primary supplier have limited visibility of
the capabilities of deeply-nested sub-suppli-
ers. Supply chain risks can be reduced but
not eliminated. Once software is deployed,
residual supply chain risk identification and
mitigation become a continuing responsibil-
ity for the acquiring organization.

Software supply chain risk considera-
tions must continue in sustainment. An
assessment done as part of the initial
acquisition for a commercial component
is valid only at that time. A commercial
software component can easily be
deployed for five years or longer. During
that period, the following can happen:
• New attack techniques and software

weaknesses appear.
• Changes in acquirer usage activate

product features with weaknesses that
have not been considered in earlier
assessments.

• A sequence of product upgrades that
add features or change design can
invalidate a risk assessment.

• Changes occur in the risk factors used
in initial vendor and product assess-
ment (e.g., corporate merger, subcon-
tractors, corporate policies and staff
training, or in the corporate software
development process).

• Product criticality increases with new
or expanded usage.

Mitigating Common Software
Weaknesses in the Supply Chain
Addressing the appearance of common
software weaknesses introduced in a sup-
ply chain requires knowing where to look
and what to look for. Discussions of sys-
tem security often include firewalls,

authentication issues (such as password
strength), or authorization mechanisms
(such as role-based access controls).
Application security has often been
ignored, in part because of the faulty
assumption that firewalls and other
perimeter defenses can protect the func-
tional code. The problem is further com-
pounded as application developers with-
out specific security training are typically
unaware of the ways their software, while
meeting functional requirements, could be
compromised. Security software—such as
a firewall or a password management
component—is usually subject to an inde-
pendent security assessment that consid-
ers the development history as well as the
design and operational context. There is
no equivalent effort applied to the securi-
ty of application components.

The pervasiveness of easily remedied
weaknesses (as observed by Veracode)
provides a simple attack vector that is eas-
ily exploited. A first step should be the
elimination of the most pervasive com-
mon weaknesses, particularly from
acquired application software.

There is currently insufficient practice
data to identify best practices that could
be required of suppliers, but our observa-
tion of current practice suggests activities
that can improve confidence in a software
supply chain [5].

Security for application software is get-
ting increased commercial attention. In
2006, Microsoft established their Security
Development Lifecycle (SDL), which
served as a starting point for other efforts
[6]. Today, more than 25 large-scale appli-
cation software security initiatives are

Considering Software Supply Chain Risks©

As outsourcing and commercial product use increase, supply chain risk becomes a growing concern for software acquisitions.
Hardware supply chain risks include manufacturing and delivery disruptions and the substitution of counterfeit or substan-
dard components. Software supply chain risks, usually during development, include third-party product tampering or the intro-
duction of exploitable software defects. This article identifies several current practices that can be incorporated in an acquisi-
tion to reduce those risks.

Dr. Robert J. Ellison and Dr. Carol Woody
SEI

Software Source Acceptable

Commercial 38%

Internally Developed 30%

Open Source 39%

Outsourced 6%

Table 1: CWE/SANS Top 25 Compliance

© Copyright 2010 by Carnegie Mellon University.

Game-Changing Tools and Practices

under way in organizations as diverse as
multinational banks, independent software
vendors, the U.S. Air Force, and embed-
ded systems manufacturers. The Software
Assurance Forum for Excellence in Code,
an industry-led non-profit organization
that focuses on the advancement of effec-
tive SwA methods, published a report on
secure software development [7]. In 2009,
the first version of the Building Security
In (BSI) Maturity Model [8] (BSIMM) was
published1. The Software Assurance
Processes and Practices Working Group2

has released several relevant documents,
including [9], which is linked to the
Capability Maturity Model Integration for
Development. In addition, the Open Web
Applications Security Project has devel-
oped a Software Assurance Maturity
Model for software security [10]. Finally,
the BSI website at <https://buildsecurity
in.us-cert.gov> contains a growing set of
reference materials on software security
practices.

The emerging collection of secure
development techniques arose from
addressing specific software weaknesses.
The following section considers three
classes of software weaknesses as a way to
explain the criticality of software design
and coding mistakes.

Common Weaknesses in Applications
Three common weaknesses—cross-site
scripting (XSS), SQL injection, and cross-
site request forgery (CSRF)—appear in
the top four of the 2010 CWE/SANS list.
Topping the list is XSS, which can com-
promise a user’s computer when they view
a page on what they consider to be a trust-
ed site. Next is SQL injection, an attacker
technique that can compromise applica-

tions that query databases (e.g., where
credit card data has been illegally down-
loaded). Ranked fourth is CSRF, where an
attacker can masquerade as a trusted user
of a web server only to upload malicious
data to that server.

XSS
Web traffic consists of a mixture of data
and script in HTML. With XSS, the attack-
ers objective is to have users retrieve a Web
page from your server that contains mali-
cious code, say in JavaScript that the attack-
er wrote. The user trusts your server, and
their browser will execute the malicious
code as if it came from you. This vulnera-
bility is a design error that allows the
attacker to get their input into your server.

SQL Injection
Weaknesses are often associated with mal-
formed input. The vulnerability risk is
high when an application incorporates
user input into a service request. Assume
we have an application that displays an
employee name and salary after a user
enters an employee ID. If a user enters
48983, then a database query is created to
retrieve all entries that satisfy the relation
ID = 48983. An attacker’s objective is to
see if the input routine will accept values
that might provide additional information.
The classic SQL injection example would
be equivalent to the input of 48983 or
(1 = 1). If this input is accepted, then the
query returns all entries where the
ID = 48983 or where 1 = 1. As the latter
is always true, all employee records are
returned.

CSRF
A CSRF is sort of the reverse of an XSS.

An attacker compromises a user so that
the attacker can masquerade as that user,
accessing their Web site and making
requests. A CSRF that inserts data—com-
bined with XSS to distribute that data—
can lead to extensive and devastating con-
sequences (e.g., XSS worms that spread
throughout very large Web sites in a mat-
ter of minutes).

Emerging Secure
Development Practices
Two types of analysis—one focused on
understanding and controlling the soft-
ware attack surface and the other focused
on understanding potential threats (threat
modeling)—are good examples of SwA
practices that can be incorporated early in
the development life cycle and that help
make supply chain security risk manage-
ment more tractable. A software attack
surface is a way of characterizing potential
attack vectors for compromising applica-
tion code. Threat modeling characterizes
which aspects of the attack surface are
most at risk for exploitation. These con-
cepts are useful during development,
deployment, and system operation. They
help guide what information must be
gathered and how it can be best used to
help prioritize and mitigate (if not elimi-
nate) supply chain security risks.

Attack Surface Analysis
An approach to managing the scope of the
software security analysis arose from prag-
matic considerations. SDL developer Mi-
chael Howard observed that attacks on
Windows systems typically exploited a
short list of features such as open ports,
services running with total access control,
dynamically generated Web pages, and
weak access controls [11]. Instead of
counting bugs in the code or the number
of vulnerability reports, Howard proposed
to measure the attack opportunities, a
weighted sum of the exploitable features.

An attack-surface metric is used to
compare multiple versions or configura-
tions of a single system. It cannot be used
to compare different systems.

Howard’s intuitive description of an
attack surface led to a more formal defin-
ition (in [12]), with the following dimen-
sions:
• Targets. Data resources or processes

desired by an attacker; for example, a
process could be a Web browser, Web
server, firewall, mail client, database
server, etc.

• Enablers. The other processes and
data resources used by an attacker,
such as Web services, a mail client, or

Program
Office

Prime
Contractor

Reuse
Legacy
Software

Other
Programs

Outsource

Contractor

Supplier

Open-Source
Software

Supplier

Acquire

Develop
In-house

Reuse

Outsource

? ? ?
?

Acquire

COTS
U.S.

Foreign
Location

Foreign
Developers

Offshore

Develop
In-house

Contractor

?

?

?

Supplier

U.S.

Global

Foreign

?

?

?

Figure 1: Software Supply Chain

10 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Considering Software Supply Chain Risks

September/October 2010 www.stsc.hill.af.mil 11

having JavaScript or ActiveX enabled.
Mechanisms such as JavaScript or
ActiveX give the attacker a way to exe-
cute their own code.

• Channels and Protocols (Inputs and
Outputs). These are used by an attack-
er to obtain control over targets.

• Access Rights. Control is subject to
constraints imposed by access rights.
An attack surface analysis reduces sup-

ply chain security risk in several ways:
• A system with more targets, more

enablers, more channels, or more gen-
erous access rights provides more
opportunities to the attacker. An
acquisition process designed to miti-
gate supply chain security risks should
include requirements for a reduced
and documented attack surface.

• The use of product features influences
the attack surface for that acquirer.
The attack surface can define the op-
portunities for attacks when usage
changes.

• It helps to focus attention on the code
that is of greatest concern for security
risk. If the code is well partitioned so
that features are isolated, reducing the
attack surface can also reduce the code
that has to be evaluated for threats and
weaknesses.

• For each element of a documented
attack surface, known weaknesses and
attack patterns can be used to mitigate
risks.

• The attack surface supports deploy-
ment, as it helps identify attack oppor-
tunities that could require additional
mitigation.

Threat Modeling
Threat modeling is a part of Microsoft’s
SDL [6, 13], but it is a general purpose
activity that can easily be incorporated
into any development life cycle. Identified
as one of 10 low-cost suggestions that
improve enterprise security [14], threat
modeling:
• Provides a business justification for

security by mapping threats to busi-
ness assets.

• Enables a thoughtful conversation
around risk and trade-offs during soft-
ware development in an objective,
quantifiable way.

• Encourages a logical thought process
in determining an application’s security
model.

• Lets architects and developers work
together to understand threats at
design time and build security in,
instead of hoping that the quality
assurance team can discover those
threats later in the life cycle.

• Helps business analysts understand
and create traceable security require-
ments.
The approach used in threat modeling

is applicable to other risk assessment
methodologies. Data flows or usage scenar-
ios are identified along with critical business
assets. A detailed walkthrough of a data
flow considers the deployed configuration
and expected usage, identifies external
dependencies (such as required services),
analyzes the interfaces to other compo-
nents (inputs and outputs), and documents
security assumptions and trust boundaries
(such as the security control points). The
usage scenarios can support business justi-
fications and link threats to the criticality of
business assets. Such a walkthrough can
consider adversary motivations (such as the
criticality of the data being handled), in
addition to the technical risks.

Fuzz Testing
Increased attention on secure application
software components has influenced secu-
rity testing practices. All of the organiza-
tions contributing to the BSIMM do pen-
etration testing, but there is increasing use
of fuzz testing. Fuzz testing creates mal-
formed data and observes application be-
havior when such data is consumed. An
unexpected application failure, due to mal-
formed input, is a reliability bug and pos-
sibly a security bug. Fuzz testing has been
used effectively by attackers to find weak-
nesses. For example, in 2009, a fuzz-test-
ing tool generated XML-formatted data
that revealed an exploitable defect in wide-
ly used XML libraries. At Microsoft, about
20 to 25 percent of security bugs in
code—not subject to secure coding prac-
tices—are found via fuzz testing [6].

Using Secure Development
Practices in the Software
Supply Chain
Let’s see how our examples of secure
development practices could be applied to
the acquisitions of commercial software
components. Inputs to that analysis include
organization-specific information and
available data on vendors and products.
The key questions are: Has the developer con-

sidered how the software could be exploited? and
Has behavior under unexpected or adverse condi-
tions been analyzed? The evidence to answer
those questions can be drawn from coding
practices, static code analysis, common
weaknesses analysis, attack patterns analy-
sis, threat/vulnerability analysis, software
security testing, and dynamic testing.

Techniques such as attack surface
analysis, threat modeling, and fuzz testing
could play multiple roles in commercial
software acquisition.

Assume a commercial component is
part of a larger contracted system devel-
opment acquisition. In this instance, the
commercial components are selected by
the primary contractor. Supply chain
analysis could include examining:
• The attack opportunities the compo-

nent exposes in terms of features and
implementation (component develop-
er, prime contractor, or independently
developed).

• The identification and mitigation of
risks by the component developer (e.g.,
supplier fuzz testing, supplier threat
modeling [or the equivalent], indepen-
dent assessment, contractor fuzz test-
ing, and acquirer fuzz testing as part of
acceptance and continued for product
upgrades during sustainment).

• The criticality of risks for the planned
usage (contractor threat modeling as a
basis for discussions with the acquirer).

• Risk mitigations (acquirer trade-off
decisions with respect to functionality,
costs, and acceptable risks based on
contractor threat modeling).
Also note that development artifacts

should include documented supply chain
and threat-modeling analysis provided by
the contractor to the acquirer.

Acquirer Responsibilities
Supply chain risks continue during sus-
tainment. A documented attack surface
and threat-modeling analysis—provided
by a vendor—would influence the acquir-
er’s future responses to changes in usage,
threats, or supporting technologies, and
should be incorporated into contracting
efforts done during sustainment.

While part of the responsibility for

Supply chain risks are dangerous for software acquired and utilized by the defense indus-
try. This article examines significant supply chain risks, such as the inadvertent introduc-
tion of exploitable software defects during development and third-party product tamper-
ing. This article squarely puts responsibility on the acquirer for avoiding supply chain prob-
lems, and provides several techniques that will assist defense industry software acquirers in
focusing their risk mitigation. These methods will improve software quality, in turn reduc-
ing expenses—especially in regards to exploitation recovery and system patching.

Software Defense Application

Game-Changing Tools and Practices

12 CROSSTALK The Journal of Defense Software Engineering September/October 2010

supply chain assurance can be outsourced
to a prime contractor, the supply chain
risks for individual systems have to be
aggregated. For all deployed systems, the
responsibility for the aggregation of sup-
ply chain risks falls to the acquirer.
Software acquisition has grown from the
delivery of standalone systems to the pro-
visioning of technical capabilities integrat-
ed within a larger system-of-systems (SoS)
context. This integration extends the criti-
cality of supply chain risk analysis.
Software security defects in any of the
products or services are a potential supply
chain security risk to all SoS participants.
A set of one-off approaches for individ-
ual system supply chain assurance creates
a nearly impossible task for an SoS.

Summary
A software supply chain objective should
be to incorporate the identification and
mitigation of likely design, coding, and
technology-specific weaknesses into the
development life cycle. This article pro-
vides an analysis of three practices that
support that objective. Mitigations of
items on a CWE/SANS Top 25 list are
usually linked to detailed design or coding
practices, but mitigations are also associat-
ed with risk analysis, requirements, archi-
tecture, and testing. This article—and
sources like the BSI Web site—provide a
foundation for establishing a full life-cycle
context for security improvement.u

References
1. The MITRE Corporation. Common

Weakness Enumeration. 17 May 2010
<http://cwe.mitre.org>.

2. The MITRE Corporation. “2010
CWE/SANS Top 25 Most Dangerous
Programming Errors.” Common Weak-
ness Enumeration. 5 Apr. 2010 <http://
cwe.mitre.org/top25>.

3. Veracode, Inc. State of Software Security
Report. Vol. 1. 1 Mar. 2010 <www.vera
code.com/reports/index.html>.

4. The MITRE Corporation. “2009 CWE/
SANS Top 25 Most Dangerous Pro-
gramming Errors.” Common Weakness
Enumeration 29 Oct. 2009 <http://
cwe.mitre.org/top25/archive/2009/
2009_cwe_sans_top25.html>.

5. Ellison, Robert, et al. Evaluating and
Mitigating Software Supply Chain Security
Risks. SEI, Carnegie Mellon Universi-
ty. Technical Note CMU/SEI-2010-
TN-016. May 2010 <www.sei.cmu.
edu/reports/10tn016.pdf>.

6. Howard, Michael, and Steve Lipner.
The Security Development Lifecycle.
Redmond, WA: Microsoft Press, 2006.

7. Bitz, Gunter, et al. Fundamental Practices

for Secure Software Development: A Guide
to the Most Effective Secure Development
Practices in Use Today. 8 Oct. 2008
<www.safecode.org/publications/SA
FECode_Dev_Practices1008.pdf >.

8. McGraw, Gary, Brian Chess, and
Sammy Migues. The Building Security In
Maturity Model – BSIMM2. 2010
<www.bsi-mm.com>.

9. DHS. Build Security In – Software
Assurance. “Process Reference Model
for Assurance Mapping To CMMI-
DEV V1.2.” 23 June 2008 <http://
buildsecurityin.us-cert.gov/swa/
downloads/PRM_for_Assurance_to_
CMMI.pdf>.

10. The Open Web Application Security
Project. “Software Assurance Maturity
Model.” 5 May 2009 <www.owasp.
org/index.php/Category:Software_As
surance_Maturity_Model>.

11. Howard, Michael. “Fending Off
Future Attacks by Reducing Attack
Surface.” Microsoft Developer Network. 4
Feb. 2003 <http://msdn.microsoft.
com/en-us/library/ms972812.aspx>.

12. Howard, Michael, Jon Pincus, and
Jeannette M. Wing. Measuring Relative
Attack Surfaces. 2003 <www.cs.cmu.
edu/~wing/publications/Howard

-Wing03.pdf>.
13. Swiderski, Frank, and Window Snyder.

Threat Modeling. Redmond, WA: Micro-
soft Press, 2004.

14. McGovern, James, and Gunnar
Peterson. “10 Quick, Dirty, and Cheap
Things to Improve Enterprise Securi-
ty.” Security & Privacy 8.2 (Mar.-Apr.
2010): 83-85.

Notes
1. BSIMM was created from a survey of

nine organizations with active software
security initiatives considered to be the
most advanced. The nine organiza-
tions were drawn from three sectors:
financial services (4), independent
software vendors (3), and technology
firms (2). Those companies among the
nine who agreed to be identified
include Adobe, The Depository Trust
& Clearing Corporation, EMC,
Google, Microsoft, Qualcomm, and
Wells Fargo.

2. The group operates under the spon-
sorship of the DHS’s National Cyber
Security Division. See <https://build
securityin.us-cert.gov/swa/procwg.
html>.

About the Authors

Robert J. Ellison, Ph.D.,
is a member of the Sur-
vivable Systems Engi-
neering Team within the
Community Emergency
Response Team Program

at the SEI, and has served in a number of
technical and management roles. Ellison
regularly participates in the evaluation of
software architectures and contributes
from the perspective of security and reli-
ability measures. His research draws on
that experience to integrate security issues
into the overall architecture design
process. Ellison is currently exploring rea-
soning frameworks development to help
architects select and refine design tactics
to mitigate the impact of a class of cyber-
attacks.

SEI
Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 15213-3890
Phone: (412) 268-7705
Fax: (412) 268-5758
E-mail: ellison@sei.cmu.edu

Carol Woody, Ph.D., is
a senior member of the
technical staff at the SEI.
She leads the acquisition
and development prac-
tices and metrics team,

addressing research in four critical areas
for security in software: security require-
ments, cyber assurance, the software
supply chain, and measurement. She is
experienced in all aspects of software
and systems planning, acquisition,
design, development, and implementa-
tion in large complex organizations.
Woody is a senior member of the
Association for Computing Machinery
and the IEEE.

SEI
Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 5213-3890
Phone: (412) 268-9137
Fax: (412) 268-5758
E-mail: cwoody@cert.org

