Game-Changing Tools and Practices

Static Analysis Is Not Just for Finding Bugs

Dr. Yannick Moy
AdaCore

Static analysis tools are gaining popularity for safegnarding against the most common causes of errors in software. The main

Jocus of these tools is on antomatic bug-finding—ihe first stage in a two-phase process where the tool finds bugs and the human
then corrects them. This article excplains that such a goal is too narrow for critical software assurance (Sw.A). Instead, static

analysis tools shonld adopt a broader perspective: computing properties of software.

Static analysis tools (see the sidebar on
page 7) are very useful for finding bugs.
They go far beyond the capabilities of
compilers (warnings) and coding standard
checkers to which they are directly related.
Like compilers when they generate warn-
ings, static analysis tools aim to detect pos-
sible run-time errors (e.g, buffer over-
flow) and logic errors (e.g, vatiables not
referenced after being assigned). Like cod-
ing standard checkers, static analysis tools
sometimes allow users to define their own
set of patterns to flag, But static analysis
tools generally perform much more
sophisticated analyses than is typically
found in compilers and coding standard
checkers (e.g., looking at global context
and keeping track of data and control
flow).

The appeal of these tools is immedi-
ate, providing an almost yes/n0 answer to
very hard problems (termed wndecidable in
mathematical terms). But while you’re ask-
ing Are there any bugs in this code?, the tool is
actually answering a subtly different ques-
tion: Have any bugs been detected in this code?
Thus, when a tool answers #o problems, it
means that it couldn’t detect any bugs; it
doesn’t mean that the code has no bugs.
Further, the actual question should be:
Have any shallow/ common bugs been detected in
this code? As explained by a team at soft-
ware integrity company Coverity: “errors
found with little analysis are often better”
because they are clear errors that a human
reviewer will more likely understand [1].

That is the catch. Static analysis tools
are not compilers whose output (object
code) rarely needs to be inspected. They
produce results for humans to review. At
the very least, a human needs to undet-
stand the problem being reported—and
also, in most cases, the reason for the
report—in order to assess what, if any,
correction to make.

Focusing on Human-Readable
Output

Because humans ultimately label each
problem reported by a static analyzer as

September/October 2010

either a real error ot a false alarm whose ratio
is used to evaluate the quality of a tool,
commercial tools strive to present the user
with understandable warnings supported
by explanations. Even trivial changes to
the messages may have a large impact. In
my own experience working on the static
analyzer PolySpace, I was quite surprised
by the positive response from customers
on what seemed to be simply a cosmetic
change. Messages for warnings had been
reworded to reflect the associated likeli-
hood, so that the message out of bounds
array index associated with certain (red)
and possible (orange) warnings was now
turned into Error: array index is out of
bounds and Warning: array index may be ont of
bounds.

The short message is usually accompa-
nied by a link to a page describing the
intent of the checker being exercised, and
the typical errors that it finds. Some static
analyzers also display more contextual
information that helps the user in diag-
nosing the problem. For example, PREfix,
an internal tool at Microsoft, displays
whether the problem occurs inside a loop
ot not, the depth of calls that exhibit the
problematic execution, etc.

As most problems only show up in
some executions reaching a particular pro-
gram point, a useful piece of information
is the execution path leading to these
problematic executions. Static analyzers
typically display such paths by coloring the
lines of code defining the path (e.g, the
first line of each block of code involved).
The path may involve function calls, in
which case the user can usually unfold the
call to follow the path. Some static analyz-
ers even display contextual explanations
along the path to help follow the rationale
for a given warning,

Still, as Coverity’s team puts it,
“explaining errors is often more difficult
than finding them” [1]. This means that a
balance is found in practice between
explaining displayed warnings and hiding
those warnings that cannot be so easily
explained. As a result, real errors—which

are detected but are complex to explain—
may fail to be reported: “For many years
we gave up on checkers that flagged con-
currency errors; while finding such errors
was not too difficult, explaining them to
many users was” [1].

Static Analysis for Critical
SwA

Finding bugs with static analysis tools,
even simple bugs that testing would catch
is, of course, useful. Embedded systems
expert Jack G. Ganssle advocates doing
inspections before testing because inspec-
tions are 20 times cheaper than writing
tests: “It is just a waste of company
resources to test first” [2]. As human time
is far more expensive than CPU time, the
same argument shows that static analysis
should be performed before inspections
ot testing, even for finding simple bugs.

However, the nets that static analysis
tools are using to catch bugs have a large
mesh, too coarse for critical SwA. One
example is integer overflow: adding two
large positive integers and getting a nega-
tive integer as a result. These are rather
unimportant bugs for most commercial
static analyzers, and are usually not even
advertised on the list of vulnerabilities
they look for. There is some rationale as to
why integer overflow is not a high priority.
At Microsoft Research, I worked with a
team that augmented PREfix with the abil-
ity to detect integer overflow bugs—and
then applied it to a large Microsoft code-
base comprising several million lines of C
and C++ [3]. The tool returned with tens
of thousands of possible integer over-
flows—and almost all of them were
intended or benign. With special heuristics
to hide most false alarms, the tool returned
with many fewer warnings (still hundreds).
Three days of reviewing warnings finally
uncovered 15 serious bugs, most of which
were related to security issues. Relying on
user review to find a few serious bugs
amidst a large number of warnings is not
the image that commercial static analyzers
are trying to achieve.

wwwistschillaf.mil 5



Game-Changing Tools and Practices

Static Analysis for Automated

Code Review

Instead of advocating a fully-automated
approach that considers human review as
a bottleneck in the application of static
analysis, some have taken the opposite
view and regard static analysis as a mecha-
nism that can expedite manual code
review.

Brian Chess and Jacob West from
Fortify Software devote a complete chap-
ter in [4] to static analysis as part of the
code review process. They consider warn-
ings issued by static analysis tools as clues
that a non-trivial safety or security argu-
ment has to be made by a human review-
er, based on the fact that “static analysis
tools often report a problem when they
become confused in the vicinity of a sen-
sitive operation” [4]. They also insist that,
whenever possible, a problem found by
code review that is not reported by the
tool should be the basis for a new custom
rule in the static analyzer. Although many
tools supply an application programming
interface for defining such custom rules, it
is not likely that most errors found during
code review can be easily encoded into
such rules (keep in mind that several orga-
nizations can create custom checkers).

Tucker Taft and Robert Dewar have
gone further, explaining how to leverage
static analysis tools for automated code
review [5]. This requires a way to query
the internal information computed by the
tool instead of just the warnings it issues.
They show how to conduct a code review
of inputs and outputs, preconditions and
postconditions, etc., based on information
generated by static analyzer CodePeer.
Undoubtedly, making static analysis a
partner in code review presents many
questions concerning the interaction
between the tool and the reviewer: One
must determine how much information to
display, how to display it, and which
queries should have displayed the infor-
mation. So far, static analysis tools have
largely stayed away from this issue because
of the difficulties in dealing with the large
amount of information available.

However, combining static analysis
with code review holds the promise of
each method complementing the other,
since their strengths are in different areas.
Tools are deterministically sound and
unsound (whether by design or through
errors in the tool itself or in its setup),
while humans are unpredictably sound
and unsound. I recently co-conducted a
very small experiment to compare the
results of static analysis and code review
for finding bugs in a Tokeneer system [6]

6 CRroOsSTALK The Journal of Defense Software Engineering

whose security properties were formally
verified. The results of this experiment
suggest that each method catches bugs the
other method misses.

Focus on Humans, Not on
Bugs

Orienting static analysis towards automa-
tion-assisted code review requires shifting
the focus from finding bugs to helping a
human understand various issues about
the code, from data-flow to exception
handling to proper input validation. This
does not mean abandoning warnings. On
one hand, tools are very good at systemat-
ically detecting a clearly defined problem,
whereas humans make errors. On the
other hand, tools cannot easily deal with
the specific project issues or translate
informal specifications into code verifica-
tion activities. Michael D. Ernst believes
that “humans are remarkably resilient to
partially incorrect information, and are
not hindered by its presence among (a suf-
ficient quantity of) valuable information”
[7]-

The idea is to automate all the things
that can be automated, but no more. With
enough eyes, all bugs are shallow. We can-
not say the same about enough tools. The
choice of what is and is not important is
best left to a human to decide, provided
suitable user interactions are built into the
tools. The problem is that static analyzers
targeted at bug-finding may not be so easy
to re-architect for answering queries from
a uset. Many of these tools only consider
sets of execution paths that do not cover
all cases; therefore, they may not easily
provide information on all executions.

Tools like PolySpace and Frama-C dis-
play ranges of integer variables (and
pointer variables for Frama-C) on
demand: When the user puts the focus on
a variable in the code, the range corre-
sponding to all the possible values of this
variable (in all executions) is displayed in a
tool-tip or in a side panel. PolySpace uses
the same kind of interaction to display all
the information it computes about possi-
ble run-time errors; it is emphasized by
coloring the code using the standard con-
vention of green for ok, orange for warn-
ing, and red for error.

Static Analysis for Computing

Properties

An absence of run-time errors is the first
property that comes to mind when talking
about static analyzers. Most tools cannot
compute this property, as they are
designed to report only a subset of all
possible errors and analyze only a subset

of all possible executions. To the best of
my knowledge, only three commercial
tools compute this property: the Poly-
Space and CodePeer tools, and the
SPARK programming language. By focus-
ing on humans rather than bugs, all three
have found ways to solve the false alarm
problem: PolySpace colors the code and
lets users query individual program points
for possible run-time errors; CodePeer
partitions warnings into three buckets
(high, medium, low) with low warnings
only presented on user request; and
SPARK imposes enough restrictions
(checked by static analysis) that the false
alarm rate is low (e.g., there can be no read
of an uninitialized variable). All of these
tools also allow recording manual analysis
of warnings for reuse when the code is
reanalyzed after being modified.

Absence of run-time errors is not the
only property of interest in critical SwA.
In fact, it is rather the least interesting
property (things behave as they are writ-
ten), except that it must hold in order for
the program to respect any other proper-
ty, and it could ideally be verified from
source code only without any user guid-
ance. Absence of run-time errors is some-
times framed as program correctness,
which tends to boost its importance.

In a recent position paper [8], software
engineering pioneer David Lorge Parnas
warns that this abstract notion of correct-
ness makes no sense in practice:
“Correctness is not the issue.” Indeed,
correctness is always relative to a given
specification and every non-trivial specifi-
cation is wrong, whether it is formal or
informal. The usual wrongness is being
incomplete. This is especially true for for-
mal specifications, because no existing
formal language can express all the prop-
erties we expect from a correctly operating
system, in particular for embedded soft-
ware that interacts with the outside world.
As an example, a correct compiler is one
that must satisfy a number of require-
ments, including the issuing of useful
error messages. No formal language can
express this specification. Instead of cor-
rectness proofs, Parnas urges static analy-
sis tool writers to focus on property calcu-
lation, which is the norm in other engi-
neering fields.

We are interested in two types of
properties:

* Functional properties like values, rela-
tions, preconditions, postconditions,
and dependencies.

* Non-functional properties like cover-
age, memory footprint, worst-case
execution time (WCET), and profiling,

Most static analyzers are already capable

September/October 2010



of generating functional information
because they internally compute program
invariants that are predicates describing
some constraints respected by the pro-
gram (e.g., the fact that variable X is posi-
tive at some point, or more complex rela-
tions between variables like linear inequal-
ities and Boolean combinations of such
inequalities that hold at some point).
Preconditions and postconditions are spe-
cial kinds of invariants that are particular-
ly interesting, because they make function
interfaces explicit.

The first problem is that a static ana-
lyzer may compute a large number of such
invariants, most of which ate not of inter-
est to the user. As already mentioned, one
solution is to let the user indicate which
invariants are of interest. Some tools
already display the ranges of values taken
by variables when a user selects such a
variable in the program. Ideally, we would
like to provide an arbitrary expression, say
X + Y, and ask the static analyzer for all
invariants at a specific program point that
mentions this expression.

A second problem is that many static
analyzers do not exactly compute invari-
ants, either because they analyze only one
path (or set of paths) at a time, or because
they perform unsound simplifications
during their analysis. In the former case,
the predicate that characterizes the path
(ot the set of paths) analyzed is usually not
easily readable, so simply outputting
invariants of the form predicate-for-the-path
implies znvariant-for-the-path is unlikely to be
useful. Instead, we can imagine that the
path (or the set of paths) is displayed by
highlighting appropriate lines in the
source code (as is already done for warn-
ings)—and that only the invariant part is
displayed. Even in the case where the sta-
tic analyzer performs unsound simplifica-
tions (possibly missing a real error), giving
access to the internal invariants may help
users understand the simplifications pet-
formed by the tool. When looking for
integer overflow bugs in a large codebase
at Microsoft, I found it very useful to have
access to the models computed by PREfix
for each function. These models gave the
invariants at function exit (postconditions)
computed by the tool for a set of paths
described by invariants at function entry
(preconditions). This was critical to quick-
ly discard warnings caused by an incorrect
model computed by the tool, which made
it possible to concentrate on actual errors.

Some static analyzers also compute
non-functional properties (i.e., properties
that are not related to the correctness of
the program’s computations). Many static
analyzers warn about dead code, which is

September/October 2010

Static Analysis Is Not Just for Finding Bugs

test case generators.

negative.

What Is a Static Analysis Tool?

A static analysis tool (or static analyzer) has three major characteristics:

* Its input is the source code for a program in a programming language.

e It analyzes the program’s structure without executing the program.

* As its primary function, the tool outputs information that is relevant to humans
developing or maintaining the program.

This general definition includes tools such as coding standard checkers, bug finders, and

Many static analysis tools attempt to detect problematic constructs. Ideally, such a
tool should identify all constructs in a given program—and only those constructs
encountering the problem during execution. Unfortunately, mathematical com-
putability theory shows that it is impossible to produce such a tool for analyzing arbi-
trary programs in any nontrivial programming language. So, in practice, a tool will suf-
fer from either one or both of these deficiencies:

* Failure to detect a problem, yielding what is (pethaps confusingly) known as a fa/se

* Mistakenly flagging a correct construct as a problem, yielding a false alarm
(known in the literature as a false positive).
A tool that does not generate false negatives is said to be sound. A tool’s precision
is a measure of its ability to avoid generating false positives. Soundness and precision
are tradeoffs, so the challenge for a tool provider is to strike an appropriate balance.

the same property as code coverage, only
seen from the other direction. Although
general coverage seems hard to attain by
static analysis, unit coverage that considers
the coverage of a function’s constructs for
all possible calling contexts (and thus all
values of inputs) is much more feasible.
Again, mapping the results of the analysis
onto the source code provides the best
user interaction here. Generating tests
whose execution shows a line of code is
also a constructive way to compute the
property that a line of code is not dead.

Expanding on this idea, we can imag-
ine giving a predicate at a program point,
say X < Y, and asking the static analysis
tool to produce a counterexample. This is
a very efficient way to make progress
when the tool does not generate an invari-
ant which, according to the user, should
hold. Without such interactions, the user
is usually left wondering if the tool was
not clever enough to prove the property—
ot if it holds at all. Additionally, seeing the
actual counterexample (instead of only
knowing there is one) greatly facilitates
understanding of the problem. What is
important here is the user interaction,
which allows very quick feedback on a
question that the user finds interesting;

Specialized static analysis tools already
provide information such as memory
footprints and WCET. For example,
Airbus is using these tools to help certify
their programs at the highest levels of the
DO-178 avionics safety standard [9].
However, not much wotk has been done
with these tools to provide a rich user
interaction at the function level.

New ways of interacting with static

analysis tools are desirable and possible.
As a very simple example, some integrated
development environments (IDEs) can
display the shortest path in the call graph
between two functions when a user asks
whether one can be called from the other.
Other IDEs highlight entities based on
syntactic categories, triggered when the
user puts the cursor on an entity. Those
are the kinds of useful interactions that
static analyzers should aim for.

Conclusion

The current emphasis on static analysis
will not necessarily provide the tools that
are needed for critical SwA, which is based
on human assessment of fitness-for-purpose.
Useful tools are those that compute
human-readable properties of the soft-
ware, providing reviewers with much
deeper information than is currently avail-
able. The Agile Manifesto [10] correctly
recognizes that individuals and interac-
tions should be our main focus for creat-
ing useful processes and tools.

One static analysis vendor goes as far
as to admit: “No one wants to be on the
hot seat when a critical vulnerability is
exploited in the field or when a coding
mistake causes product recalls, brand
damage, or revenue losses.” I do not think
that static analysis provides the kind of
insurance suggested in [11]; like other sys-
tems assurance, critical SwA is not princi-
pally a matter of tools, but a matter of
“leadership, independence, people, and
simplicity” [12].

Static analysis for code review is cet-
tainly a very promising venue for critical
SwA. Looking even further, static analysis

wwwistschillafmil 7



Game-Changing Tools and Practices

Software Defense Application

The defense industry—as evidenced by projects such as Software Assurance Metrics
and Tool Evaluation—is paying significant attention to static analysis tools. This arti-
cle helps DoD decision-makers and developers assess and select static analysis tools
that meet their safety and security requirements.

used during development (e.g., for code
review preparation) can help a program-
mer understand complex behaviors and
detect subtle mistakes—Ilike a “buddy”
does in pair programming. In other words,
static analysis for humans. ¢

Acknowledgements

Many colleagues at AdaCore provided very
valuable comments on an initial version of
this article, in particular Bob Duff and Ben
Brosgol.

References

1.

Bessey, Al, et al. “A Few Billion Lines of
Code Later: Using Static Analysis to
Find Bugs in the Real World.”
Commmunications of the ACM 53.2. Feb.
2010 <http://cacm.acm.otg/magazines
/2010/2/69354-a-few-billion-lines-of
-code-later >.

Ganssle, Jack G. “A Guide to Code
Inspections.” Vers. 2.1. Feb. 2010
<www.ganssle.com/inspections.pdf>.

3. Moy, Yannick, Nikolaj Bjorner, and

Dave Sielaff. “Modular Bug-finding for
Integer Overflows in the Large: Sound,
Efficient, Bit-precise Static Analysis.”
Microsoft Research. 11 May 2009 <http://
research.microsoft.com/apps/pubs/
?id=80722>.

. Chess, Brian, and Jacob West. Sewre

Programming with Static Analysis. Chapter
3, “Static Analysis as Part of the Code
Review Process.” Upper Saddle River,
NJ: Addison-Wesley, 2007 <http://
media.techtarget.com/searchSoftware
Quality/downloads/Secure_Program
ming_ CHO3Chess.pdf>.

. Taft, S. Tucker, and Robert B.K. Dewar.

“Making static analysis a part of code
review.” Embedded Computing Design. 16
June 2009 <http://embedded-compu
ting.com/making-static-analysis-part
-code-review>.

. Moy, Yannick, and Angela Wallenburg.

Tokeneer: Beyond Formal Program Verifi-
cation. Proc. of the Embedded Real

8 CRoOsSTALK The Journal of Defense Software Engineering

12.

Time Software and Systems Confer-
ence. Toulouse, France. 21 June 2010
<www.open-do.otrg/wp-content/up
loads/2010/05/erts2010.pdf>.

Ernst, Michael D. Static and Dynamic
Analysis: Synergy and Duality. Proc. of the
Workshop on Dynamic Analysis.
Portland, OR. 9 May 2003 <www.
cs.washington.edu/homes/mernst/

pubs/staticdynamic-woda2003.pdf>.

8. Parnas, David Lorge. “Really Rethink-

ing Formal Methods.” IEEE Computer
43.1 (Jan. 2010).

Souytis, Jean, et al. Formal Verification of
Avionies Software Products. Proc. of the
16th Annual Symposium on Formal
Methods. Eindhoven, The Nethetlands.
2-6 Nov. 2009.

10. Beck, Kent, et al. “Manifesto for Agile

Software Development.” Feb. 2001
<www.agilemanifesto.org>.

11. Fisher, Gwyn. “When, Why and How

to Leverage Source Code Analysis.”
White Paper. 2007 <www.klocwork.
com/resources/white-paper/static
-analysis-when-why-how>.
Haddon-Cave, Charles. The Nimrod
Review: An Independent Review into the
Broader Issues Surrounding the 1oss of the
RAF Nimrod MR2 Aireraft X17230 in
Afghanistan in 2006: Report. London:
TSO. 28 Oct. 2009 <http://ethics.
tamu.edu/guest/XV230/1025%5B
1%5D.pdf>.

About the Author

Yannick Moy, Ph.D., is
a senior software engi-
neer at AdaCore, where
he works on software
source code analyzers
CodePeer and SPARK,
to detect bugs or
safety/security properties. Moy previ-

mostly verify
ously worked on source analyzers for
PolySpace (now The MathWorks),
INRIA Research Labs, Orange Labs,
and Microsoft Research. He holds
degrees in computer science: a doctorate
from Université de Paris-Sud, a mastet’s
from Stanford, and a bachelot’s from the
Ecole Polytechnique. Moy is also a Siebel
Scholar.

AdaCore

46 Rue d’Amsterdam
Paris, France 75009
Phone: +33.1.4970.6716
E-mail: moy@adacore.com

September/October 2010



