
September 2008 www.stsc.hill.af.mil 15

Even though the vulnerability counts
have dropped, the number of vulner-

abilities is not zero. And, even in my
wildest dreams, I do not think we will get
to zero. I will explain why shortly.

In the very early days of the SDL,
Microsoft focused heavily on removing
design and code-level security vulnerabili-
ties; as we progressed, we added processes
that help reduce the chance that new vul-
nerabilities get added to the software.

Examples of implementation require-
ments in the SDL include:
• Use of code analysis tools on develop-

er’s desktops to find security vulnera-
bilities.

• Removing known insecure functions
(such as the C runtime strcpy and strncpy
functions).

• Migrating weak cryptographic algo-
rithms to more robust algorithms
(such as Data Encryption Standard to
Advanced Encryption Standard,
Secure Hash Algorithm (SHA)-1 to
SHA-256).
But the SDL is constantly evolving. We

update the SDL roughly twice a year so we
can keep pace with new vulnerabilities and
new security research. We find the contin-
uous improvement to the SDL to be a sig-
nificant benefit compared to static securi-
ty certification programs – such as the
Common Criteria – which do not evolve
so quickly.

Over the last few years, the SDL has
been extended to embrace a stronger
focus on defense in depth. While some
updates to the SDL continue to address
design and implementation vulnerabilities,
more of today’s SDL requirements focus
on defense in depth.

The prime driver for this change is a
realization that you can never remove all
security vulnerabilities from software. The
reason this statement is true is simple.
Some software you create might be com-
pletely secure today, but that could all
change tomorrow when security
researchers learn (and potentially make

public) new classes of vulnerabilities.
Allow me to illustrate the point with a

real example.
In October 2003, Microsoft issued a

security bulletin, MS03-047 [1] that fixed a
cross-site scripting (XSS) vulnerability in
the Outlook Web Access (OWA) front
end to Microsoft’s Exchange 5.5 software.
In August 2004, Microsoft issued another

bulletin, MS04-026 [2], in the same OWA
component that was fixed in MS03-047 to
fix an XSS variation called HTTP
response splitting. Interestingly, the code
fixes were relatively close to one another.
So the question that’s probably on your
mind is, “What happened? How did you
guys miss the bug that led to MS04-026?”
The answer is simple. At the time we
issued MS03-047, the world had not heard
of HTTP response splitting vulnerabili-
ties. In theory, the Microsoft Exchange
engineers could have scoured the code
and fixed every known security bug, but
they would probably have missed the vul-
nerability that led to MS04-026 because
nobody knew of that class of vulnerabili-
ty at the time. So what changed? What led
to the security vulnerability? In March

2004, Sanctum (purchased by Watchfire,
which has since been purchased by IBM)
released a paper entitled “Divide and
Conquer” [3] describing a variation of the
XSS vulnerability. When the Microsoft
engineers fixed the first bug, the second
class of bug was unheard of.

Unfortunately, there were no defense
in depth mechanisms in place to protect
customers from either of these vulnerabil-
ities, so customers had to apply a security
update to protect themselves.

Another example is the integer arith-
metic vulnerability [4]. Without going into
a detailed explanation, this kind of bug
was unheard of 10 years ago, and is a very
common security vulnerability today.

The moral of this story is that you can
never create totally secure code. There are
many reasons why:
• People make mistakes.
• Tools are not perfect.
• Security can have very subtle nuances

that only security experts understand,
especially with regard to cryptography.

• The Internet is an asymmetric battle-
ground. There are many hidden and
skilled attackers who can strike at will,
but defenders must be constantly vigi-
lant and never make mistakes.

• Most importantly, we cannot predict
future classes of vulnerabilities.
There are two final points that I really

wish to stress because these make defense
in depth especially critical today:
1. As the security vulnerability landscape

evolves, more vulnerability informa-
tion is moving underground and being
used by criminals to attack sensitive
systems. The defenders do not know
the system is vulnerable, so no securi-
ty update is available. This is clearly a
risk for government systems.

2. Somewhat similar to the first point is
that we are seeing more zero-day vul-
nerabilities. There may be no attacks
yet, but there is no update or
workaround either.
The rest of this article outlines some

Practical Defense in Depth

As part of its ongoing commitment to Bill Gates’ vision of Trustworthy Computing, Microsoft officially adopted important
security- and privacy-related disciplines to its software development process. These changes, called the Security Development
Lifecycle (SDL) have led to a demonstrable reduction in security vulnerabilities in products such as Microsoft’s Windows
Vista operating system and its SQL Server 2005 database. The purpose of this article is not to describe the SDL in detail,
but to outline some of the practical defensive measurements in use at Microsoft required by the SDL. If Microsoft’s SDL
is new to you, refer to the page 16 sidebar, “A Brief SDL Overview.”

Michael Howard
Microsoft Corp

“Some software you
create might be

completely secure today,
but that could all change
tomorrow when security
researchers learn (and
potentially make public)

new classes of
vulnerabilities.”



of the defense in depth techniques and
technologies applied as part of the SDL at
Microsoft.

Classes of Defense in Depth

Mechanisms
Under the SDL, there are two distinct
types of defense in depth mechanisms. We
don’t call them out explicitly as different
classes, but the distinction between the
two classes is understood.

The first type of defense is designed to
totally stop an attacker from accessing a
system or software. This class of defense
offers a level of assurance that stops an
attacker when the defense is correctly con-
figured and used. If it does not stop an
attacker, then the defense has a vulnerabil-
ity that must be fixed. One example is the
ubiquitous firewall. The SDL sets strict
requirements on the process for opening
an inbound port on the Windows Firewall.
Other examples include permissions on
objects: a weak permission could render a
system insecure. For example, Microsoft
issued a security bulletin, MS04-005 [5],
for VirtualPC for the Apple Macintosh
because of a weak permission on a critical
file that led to a symlink-style attack [4].

Strong operating system access con-
trols are an important part of the SDL
and critically important to any system;
however, a new requirement in the SDL
this past year is strong access control
mechanisms on database objects.

Structured Query Language (SQL) injec-
tion vulnerabilities are a well understood
vulnerability that can lead to disclosure of
sensitive data, data corruption, and, in
some cases, system compromise [4]. The
industry as a whole has created best prac-
tice documentation and tools to help
remove these critical bugs, but all it takes
is a new attack type or an error to leave a
customer open to attack and compromise.
The SDL-required defense in depth mech-
anisms help to mitigate this risk. In short,
direct access to the underlying tables is
explicitly denied to all but the database
administrators, and untrusted access is
limited to appropriate database objects
such as stored procedures and views.
These objects are granted access to the
underlying data. This configuration has
the effect that if an attacker can bypass
the normal defenses against SQL injec-
tion, he or she still cannot read the under-
lying data in the tables. The correct reme-
dy to prevent SQL injection is to build
safe SQL queries, but the table-level
defense is there solely in case the remedy
fails or is implemented incorrectly.

The second type of defense is a set of
mechanisms that is designed to slow an
attacker down or make an attacker create a
different exploit to attack a system. I want
to spend most of this article on this sub-
ject. At Microsoft, we continue to spend a
great deal of time and effort researching,
designing, and implementing these defens-

es: most of them are intended to help mit-
igate buffer overrun and integer overflow
vulnerabilities. A great deal of C and C++
code exists today, and even more is written
every day. In a perfect world, people
would simply abandon C and C++ in
favor of safer programming languages
such as C# or Java, but in our imperfect
world, C and C++ are often the correct
tools for the job. Again, in a perfect world,
C and C++ developers would write secure
code, but in our imperfect world this is
not always possible; however, it is impor-
tant that C and C++ developers take
advantage of defense in depth mecha-
nisms. The SDL mandates a number of
important C and C++ defenses, including:
• Address randomization.
• Stack-based buffer overrun detection.
• Heap corruption detection.
• Pointer protection.
• No-execute (often called NX or

W^X).
• Service failure restart policy.

Note that none of these defenses actu-
ally remove vulnerabilities, nor do they
magically make software more secure.
What they do is turn a potential code exe-
cution exploit into a denial-of-service bug
because these defenses will simply fail the
application if they detect an anomalous
condition. If an application crashes, it also
gives the attacker fewer opportunities to
re-attempt an attack.

I do not intend to cover each of these
in deep technical detail. The reader is
urged to e-mail the author or refer to the
references for further information [6, 7].

Address Randomization
There is nothing attackers love more than
a predictable system since it makes build-
ing reliable exploits easier. Reliable
exploits are harder to detect because they
usually execute correctly and do not crash
or alert the system operators to nefarious
acts. Windows Vista and Windows Server
2008 (and later) offer image randomiza-
tion, stack randomization, and heap ran-
domization. Image randomization relo-
cates the entire operating system into one
of 256 possible configurations on each
reboot. By default, non-operating system
images are not randomized, and third-
party components must opt into image
randomization using the /DYNAM-
ICBASE linker option in Visual C++
2005 Service Pack 1 and later. Some ver-
sions of GNU’s C Compiler (GCC) and
some versions of Linux and Berkeley
Software Distribution (BSD)-based sys-
tems also support image randomization by
using the -pie compiler option.

Windows Vista and Windows Server

16 CROSSTALK The Journal of Defense Software Engineering September 2008

A Brief SDL Overview 

The SDL is a set of requirements and recommendations added to an existing soft-
ware development process to improve security. A side benefit of the SDL is increased
robustness since many security vulnerabilities also affect robustness. SDL is all about
security improvement, not perfection.

There are two goals to the SDL. The first is to reduce the number of security vul-
nerabilities in Microsoft products. This is done by removing vulnerabilities from software,
or better yet, not adding vulnerabilities to the code from the outset. This reduction in vul-
nerabilities is achieved through education, tooling, better libraries, and so forth. The sec-
ond goal is to reduce the severity of any vulnerabilities that are inadvertently left in the
product. You can reduce severity by adding defensive mechanisms. The purpose of this
article is to explain some of those defenses.

In a nutshell, we teach people to: Do everything possible to make your product as
secure as possible, but assume it will fail.

A requirement defines an SDL task that must be completed prior to giving the code
to customers, and a recommendation defines a best practice that should be considered
by the development team. It is not uncommon for a security best practice to start out as
a recommendation and then progress to a requirement.

The SDL defines requirements and recommendations for:
• Education. 
• Risk assessment.
• Threat modeling.
• Coding.
• Testing.
• Final security review.
• Maintenance.
You can learn more about the SDL in “The Security Development Lifecycle”

(Microsoft Press, Howard and Lipner), or at the SDL blog: <http://blogs.msdn.com/sdl>.

Application Security



Practical Defense in Depth

September 2008 www.stsc.hill.af.mil 17

2008 and later also support stack random-
ization; when a thread is started, the
thread’s stack is offset by up to 32 pages (4
kilobytes on a 32-bit central processing
unit). Again, this option is available by
linking with /DYNAMICBASE.

Finally, Windows Vista and Windows
Server 2008 (and later) support heap ran-
domization, meaning that when an appli-
cation allocates dynamic memory from
the system heap, the operating system off-
sets the start of the heap by a random
amount. Heap randomization is enabled
by default in Windows Vista and Windows
Server 2008.

Together, image, stack, and heap ran-
domization can seriously hinder an attack-
er dealing with the lack of predictability.
Usually the sign of a failed attack is a crash
in the application under attack. This
means that system administrators should
really pay attention to applications that
crash, as crashes may not just be the sign
of a coding bug but a sign of a security
bug under attack.

Stack-Based Buffer Overrun

Detection
Stack-based buffer overrun detection is
available in Microsoft Visual C++ 2003
and later through the /GS compiler
switch. It works by adding a random num-
ber into a function’s stack frame at call
time and when the function returns code
inserted by the compiler, it verifies that the
random number has not changed. If it has
changed, then the application crashes
because a stack-based buffer overrun has
been detected. At this point, we can no
longer trust the integrity of the data or the
application. Some versions of the GCC
offer a similar defense by using -fstack-
protector.

This defense could require the attacker
to build a specific attack to circumvent the
defense. A good example of how this
helped protect customer is the Blaster
Worm. On Windows Server 2003 (but not
Windows 2000 or Windows XP), the vul-
nerable component was compiled with
/GS. The malicious Blaster payload was
not aware of the /GS defense, so it
crashed Windows Server 2003 machines
rather than infecting them with the Blaster
Worm.

Heap Corruption Detection
Heap corruption detection is an operating
system defense available in Windows Vista
and Windows Server 2008 (and later). It is
similar in principle to stack-based buffer
overrun detection but detects heap meta-
data corruption. Again, if the heap is cor-

rupted, the operating system can shut
down the application, reducing the chance
that an attacker will re-attempt a failed
attack.

Pointer Protection
C and C++ pointers are an attack vector;
if an attacker can overwrite a long-lived
pointer in memory, he or she can poten-
tially compromise a computer by writing
arbitrary data at a predictable location.
Windows includes functions that encode
(XOR) a pointer with a random value, and
this operation must be reversed success-
fully in order to get the valid pointer value.
In other words, if an attacker attempts to
overwrite a pointer, he or she must over-
write it with a value that survives the un-
encoding operation. Clearly, this is not
impossible, but it is another defense the
attacker must overcome. The application
programming interfaces in Windows that
perform these operations are:
• EncodePointer and DecodePointer.
• EncodeSystemPointer and Decode

SystemPointer.
Note that GLIBC v2.5 (and later) have

a similar defense, but it’s mainly used in-
side GLIBC itself to protect setjmp point-
ers. The functions, defined in sysdep.h are
PTR_MANGLE and PTR_DEMANGLE.

No-Execute (Often Called W^X)
Microsoft calls no-execute data execution
prevention (DEP). This defense marks
pages of memory as Writeable or
Executable, but not both. Essentially, this
makes it very hard for an attacker to run
malicious code out of a writeable memory
segment. Most CPUs today support this
capability. It is by no means a perfect
defense and DEP requires randomization
to be effective at stopping a class of
attacks known as return-to-libc [8].

In Windows, you can link with
/NXCOMPAT to opt-in for DEP.

Some versions of BSD and Linux sup-
port W^X also, but the compiler and
operating system support is not consistent
across platforms.

Service Failure Restart Policy
A final defense in Windows Vista and
Windows Server 2008 was very hard to
implement without sacrificing reliability.
Windows uses many services, akin to Unix
daemons, to perform critical system tasks.
Services are usually long-lived processes
that start when a system starts. In many
cases, administrators want a crashed ser-
vice to simply restart. This policy gives
better uptime to customers. This is great
for reliability, but it can be terrible for
security because it means that an attacker

can keep trying his attacks over and over
until they succeed. The ability to retry is
especially important in a system that
implements a great deal of randomization,
such as Windows Vista and Windows
Server 2008.

Windows offers the ability to define a
policy that restarts a failed service no
more than a certain number of times or
on a certain schedule. For example, an
administrator could define a policy that
will restart a process 10 times within 24
hours, and after that no longer allow it to
restart unless an administrator physically
restarts the service. It is also possible to
restart a process indefinitely. But we don’t
want to give attackers the ability to re-try
their attacks indefinitely, so we tightened
up the restart policy for many highly
exposed system services.

For example, in Windows Server 2008,
many services, including the Network
Access Protection Agent, are set to restart
twice, and then no longer restart. In other
words, the attacker has two shots. With all
the randomization in place in Windows
today, this makes the attacker’s job much
more difficult.

The Question of Least

Privilege
You may have noticed that I have not
mentioned least privilege as a defense, and
I left it out on purpose. Clearly, least priv-
ilege is an important defense, but it is nec-
essarily an imperfect wall because many
products have had and will continue to
have local escalation of privilege vulnera-
bilities. Also, least privilege does not miti-
gate many information disclosure vulnera-
bilities. Malicious code running as a nor-
mal user, rather than an administrator, can
still access data accessible by the user, and
that data could include sensitive data such
as passwords, encryption keys, personal
financial information, and e-mail. Within
the SDL we think of least privilege as very
important, but we also recognize that on a
normal user’s computer, it can be hard to
enforce the security boundary and have a
usable system. A good example of this is
running mobile code through a Web
browser. At some point, a user will proba-
bly visit a Web site that requires a Java
applet, a Flash file, or perhaps some mul-
timedia experience that will require some
mobile code. Installing this code is a trust-
ed operation, so the user must elevate to
an account that can install the code. The
process of elevating can lead to weakness-
es in a pure least privilege environment.
Of course, it is possible to utterly lock a
system down in such a way that it is very



difficult for a user to elevate at all; for
some installations processing sensitive
information, this is the right answer.

Summary
Writing code that is perfectly secure in the
long term is not possible; new attack types
appear almost weekly. But it is imperative
that systems offer a degree of protection,
even in the face of new classes of attacks
and design and coding vulnerabilities. This
means that software development organi-
zations should spend a great deal of time
thinking about defense in depth mecha-
nisms, as well as focusing on “getting the
code right.” A simple mantra to consider
is, “Your code will fail – now what?”

The problem is exacerbated by zero-
day vulnerabilities, and vulnerability
research moving underground to be used
for criminal purposes.

If there is one lesson we can all learn,
it is this: Defense in depth is just as impor-
tant as following good security coding and
design practices, because you will never
get the product totally secure.

If there is a second lesson, it is that
you must use as many defense in depth
mechanisms as possible and they must be
enabled by default because defense in
depth is most useful in the face of an
attack that takes advantage of a vulnera-
bility that is not publicly known.

We have implemented the defenses
listed above in various Microsoft products.
I would urge you to take advantage of
these defenses if you build on the
Microsoft platform; if you use other prod-
ucts, understand what defense in depth
mechanisms they offer and use them.◆

References
1. “Vulnerability in Exchange Server 5.5

Outlook Web Access Could Allow
Cross-Site Scripting Attack.” Online
posting. 12 Apr. 2004 <www.micro
soft.com/technet/security/bulletin/
ms03-047.mspx>.

2. “Vulnerability in Exchange Server 5.5
Outlook Web Access Could Allow
Cross-Site Scripting and Spoofing
Attacks.” Online posting. 10 Aug. 2004
<www.microsoft.com/technet/secur
ity/bulletin/ms04-026.mspx>.

3. Klein, Amit. “Divide and Conquer.”
HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics.
Mar. 2004 <www.packetstormsecur
ity.org/papers/general/whitepaper_
httpresponse.pdf>.

4. Howard, Michael, David LeBlanc, and
John Viega. 19 Deadly Sins of
Software Security. Emeryville, CA:
McGraw Hill, 2005.

5. “Vulnerability in Virtual PC for Mac
Could Allow Privilege Elevation.”
Online posting. 10 Feb. 2004 <www.
microsoft.com/technet/security/
bulletin/ms04-005.mspx>.

6. Howard, Michael, and Matt Thomlin-
son. “Windows Vista ISV Security.”
Microsoft Developer Network. Apr.
2007 <http://msdn2.microsoft.com/
en-us/library/bb430720.aspx>.

7. Howard, Michael. “Protecting Your
Code with Visual C++ Defenses.”
MSDN Magazine. Mar. 2008 <http://
msdn2.microsoft.com/en-us/maga
zine/cc337897.aspx>.

8. McDonald, John. “Defeating Solaris/
SPARC Non-Executable Stack Pro-
tection.” Online posting. 2 Mar. 1999
<www.ouah.org/non-exec-stack-sol.
html>.

Application Security

18 CROSSTALK The Journal of Defense Software Engineering September 2008

About the Author

Michael Howard is a
principal security pro-
gram manager on the
Trustworthy Computing
Group’s Security Engi-
neering team at Micro-

soft, where he is responsible for manag-
ing secure design, programming, and
testing techniques across the company.
Howard is an architect of the SDL, a
process for improving the security of
Microsoft’s software. He began his career
with Microsoft in 1992 at the company’s
New Zealand office, working for the first
two years with Windows and compilers
on the Product Support Services team,
and then with Microsoft Consulting
Services, where he provided security
infrastructure support to customers and
assisted in the design of custom solu-
tions and development of software. In
1997, he moved to the United States to
work on Internet Information Services,
Microsoft’s next-generation Web server,
before moving to his current role in
2000. Howard is a Certified Information
Systems Security Professional and a fre-
quent speaker at security-related confer-
ences. He regularly publishes articles on
security design and is the co-author of
six security books, including the award-
winning “Writing Secure Code,” “19
Deadly Sins of Software Security,” “The
Security Development Lifecycle,” and his
most recent release, “Writing Secure
Code for Windows Vista.”

E-mail: mikehow@microsoft.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUNE2007 � COTS INTEGRATION

JULY2007 � NET-CENTRICITY

AUG2007 � STORIES OF CHANGE

SEPT2007 � SERVICE-ORIENTED ARCH.

OCT2007 � SYSTEMS ENGINEERING

NOV2007 � WORKING AS A TEAM

DEC2007 � SOFTWARE SUSTAINMENT

JAN2008 � TRAINING AND EDUCATION

FEB2008 � SMALL PROJECTS, BIG ISSUES

MAR2008 � THE BEGINNING

APR2008 � PROJECT TRACKING

MAY2008 � LEAN PRINCIPLES

JUNE2008 � SOFTWARE QUALITY

JULY2008 � INFORMATION ASSURANCE

AUG2008 � 20TH ANNIVERSARY

to request back issues on topics not

listed above, Please contact <stsc.

customerservice@hill.af.mil> .




