
10 CROSSTALK The Journal of Defense Software Engineering September 2008

System designers face several challenges
when specifying security for distrib-

uted computing environments or migrat-
ing systems to a new execution platform.
Business stakeholders impose constraints
due to cost, time-to-market requirements,
productivity impact, customer satisfaction
concerns, and so forth. Thus, a system
designer needs to understand require-
ments regarding the confidentiality and
integrity of protected resources (e.g.,
data). Additionally, a designer needs to
predict the effect that security measures
will have on other runtime quality attrib-
utes such as resource consumption, avail-
ability, and real-time performance. After
all, the resource costs associated with
security can easily overload a system.
Nevertheless, security is often studied only
in isolation and late in the process.
Furthermore, the unanticipated effects of
design approaches or changes are discov-

ered only late in the life cycle when they
are much more expensive to resolve1.

MBE for Security Analysis
Modeling of system quality attributes,
including security, is often done – when it
is done – with low-fidelity software mod-
els and disjointed architectural specifica-
tions by various engineers using their own
specialized notations. These models are
typically not maintained or documented
throughout the life cycle, making it diffi-
cult to obtain a system view. However, a
single-source architecture model of the
system that is annotated with analysis-spe-
cific information allows changes to the
architecture to be reflected in the various
analysis models with little effort; those
models can easily be regenerated from the
architecture model (Figure 1). This
approach also allows the designer to con-
duct an adequate trade-off analysis and

evaluate architectural variations prior to
system realization, thereby gaining confi-
dence in the architectural design. Models
also can be used to evaluate the effects of
reconfiguration and system revisions in
post-development phases.

Using MBE tools, the Software
Engineering Institute (SEI) has developed
analytical techniques to:
• Represent standard security protocols

for enforcing confidentiality and
integrity, such as Bell-LaPadula [1, 2],
Chinese wall [3, 4], role-based access
control [5], and the Biba model [6].

• Model and validate security using sys-
tem architecture according to flow-
based approaches early and often in the
life cycle.
The MBE tools that the SEI uses are

the Architecture Analysis and Design
Language (AADL) and the Open Source
AADL Tool Environment (OSATE) set of
analysis plugins [7]2. The AADL is used to
model and document system architecture
and provide the following platform for
analyses:
• Using a single architecture model to

evaluate multiple quality attributes,
including security.

• Early and often during system design or
when upgrading existing system archi-
tecture.

• At different architecture refinement lev-
els as information becomes available.

• Along diverse architectural aspects,
such as behavior and throughput.

Architectural Considerations 
Security as an architectural concern
crosscuts all levels of the system (appli-
cation, middleware, operating systems,
and hardware). Thus, security requires
intra- and inter-level validation and has
immediate effects on the runtime behav-
ior of the system, specifically on other
dependability attributes.
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The designer needs to enforce intra-
and inter-level security throughout the
architecture. Figure 2 depicts various sys-
tem levels involved in the validation of
security privileges against confidentiality
requirements (it assumes that authentica-
tion and other necessary security services
are enforced). The designer seeks to ensure
that the software applications do not com-
promise the confidentiality of the secure
information they are exchanging. Conse-
quentially, software applications need to
execute on top of a secure operating sys-
tem, be mapped to a protected and secured
hardware memory space, and communicate
over a secure communication channel. If
the data is labeled “confidential,” then
every architectural layer needs to have a
clearance of at least that level.

Additionally, the designer needs to
acknowledge that security comes with a
cost. Encryption, authentication, security,
and protection mechanisms increase band-
width demand in terms of the central pro-
cessing unit (CPU), the network, and mem-
ory. These increases affect the temporal
behavior of the system (worst-case execu-
tion time, response time, schedulability, and
end-to-end latency) as well as power con-
sumption (especially important in battery-
driven or limited lifetime devices such as
sensor networks or portable communica-
tion devices).

As a result, security cannot be consid-
ered in isolation. The system designer
makes choices to trade these quality attrib-
utes against each other (a particular concern
for embedded and real-time systems, which
operate under significant resource con-
straints while ensuring high levels of
dependability and security). Security is inter-
linked with other non-functional behaviors
such as predictability/timeliness and
resource consumption, as well as inadver-
tent effects on reliability and availability.
Figure 3 illustrates some of those depen-
dencies on the single-model, multiple-analy-
sis view.

An MBE Approach to
Validating Confidentiality
Confidentiality addresses concerns that
sensitive data should be disclosed to or
accessed only by authorized users (i.e.,
enforcing prevention of unauthorized dis-
closure of information). Data integrity is
closely related, as it concerns prevention of
unauthorized modifications of data.

To model and validate the confidential-
ity of a system, we distinguish between
general and application-dependent valida-
tion. General validation of confidentiality is
the process of ensuring that a modeled sys-

tem conforms to a set of common condi-
tions that support system confidentiality
independent of a specific reasoning frame-
work for security. MBE takes advantage of
the versatile concept of subjects operating
on objects by permissible access (read, exe-
cute, append, and write), a notion intro-
duced by Bell and LaPadula [1], enabling us
to model and validate security at both the
software and hardware levels.

This form of validation assumes that
subjects and objects are assigned a security
level that is the minimum representation to
enforce basic confidentiality and need-to-
know principles. By contrast, application-
specific validation relies on detailed confi-
dentiality requirements and a specific, rea-
soning-based security framework.

The MBE security framework features:
• Representation of the confidentiality

requirements of resources (i.e., objects).
• Representation and generation of secu-

rity clearance/least privileges3 of sub-
jects operating on the objects.

• Representation of authorized opera-
tions, ensuring unauthorized infiltra-
tion, unauthorized exfiltration, and
unauthorized median of actions. This is
captured in an access matrix.
With the object’s security requirements

specified in an AADL model, the least
amount of privileges for the subjects can
be generated in a straightforward manner.
Given that the subjects’ privileges are
specified, a mismatch between the least
privilege and what has been specified
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means the assigned privilege is either
insufficient or greater than the minimum
privilege. The latter result may be unnec-
essary or an indication that the subject
might be associated with objects not yet
described in the model.

The following types of security valida-
tion and analysis are available as OSATE
plugins:
• Basic confidentiality principle. Ac-

cess should only be granted if given the
appropriate security clearance.

• Need-to-know principle. Access
should be granted to a resource only if
there is a need.

• Controlled sanitization. Lowering the
security level of an object or subject
should only be authorized and per-
formed by a privileged subject.

• Non-alteration of object’s security
requirements. A subject using an
object as input should not alter the secu-
rity level of the object, even if the object
is updated as an output from the subject.

• Hierarchical conditions. A compo-
nent has (1) a security level that is the
maximum of the security levels of its

subcomponents, and (2) all connections
are checked to determine whether the
source component of a connection
declaration has a security level that is
the same or lower than that of the des-
tination component.
Using OSATE and the AADL, system

designers and developers can add analysis
techniques as needed.

The validation through architectural
modeling of system security – given the
confidentiality requirements of data objects
and the security clearance by users – must
include validation of (1) software architec-
ture, and (2) system architecture where the
software architecture is mapped to hard-
ware components.

By mapping the entities of a software
architecture (e.g., processes, threads, and
partitions) to a hardware architecture (con-
sisting of, for example, CPUs, communica-
tion channels, and memory), we can ensure
that the hardware architecture supports
required security levels, as described in
Figures 4 and 5.

Consider the scenario of two commu-
nicating processes, both requiring a high

level of security because the data objects
require secret clearance. The system plat-
form in this scenario consists of a set of
CPUs with hardware support for various
algorithms that encrypt messages before
network transmission. By modeling the sys-
tem, we can represent and validate that
both processes and threads (now consid-
ered to be objects) can be executed (access
mode) on CPUs (subjects) with adequate
encryption support. Furthermore, we can
validate that CPUs (objects) communicate
data (access modes of writing and reading)
over appropriately secured communication
channels (subjects). In a similar fashion, we
can enforce design philosophies saying that
only processes of the same security level
are allowed to co-exist within the same
CPU or partition, or that they can write to
a secured memory.

A combination of the AADL and the
OSATE security plugin tool has been put
into use in industry. Rockwell-Collins used
the technology to enable the high-assur-
ance handling of data from multiple sen-
sors having varying levels of security, such
as airborne imagery with the Field
Programmable Gate Array (FPGA).
Typically, a high-assurance processor is
used to securely tag variable input. An
FPGA is powerful and fast. It is deemed
easier to develop applications on an FPGA,
which also reduces the cost and time-to-
market. Furthermore, the FPGA can be
reprogrammed at runtime (e.g., to fix bugs),
which can lower maintenance-engineering
costs. Because FPGA behavior is more
complex, architecture-level definition and
analysis are needed. To this end, Rockwell-
Collins developed architectural models of
the FPGA using AADL and used the
OSATE tool to validate security and
demonstrate the high-assurance potential
of FPGAs.

Validating MILS Architectures
With the MBE Approach
The AADL and OSATE tools can be used
to validate the security of systems designed
using the MILS4 architecture approach (see
[8, 9]). MILS uses two mechanisms to mod-
ularize – or divide and conquer – in archi-
tecting secure systems: partitions, and sepa-
ration into layers. The MILS architecture
isolates processes in partitions that define a
collection of data objects, code, and system
resources and can be evaluated separately.
Each partition is divided into the following
three layers, each of which is responsible for
its own security domain and nothing else:
1. Separation Kernel (SK). Responsible

for enforcing data isolation, control of
information flow, periods processing,

-- Property intended to be customized by modelers.
-- Parameterizes the security property definitions.
property set Security_Types is

-- Military levels by default
Classifications:

Type enumeration (unclassified, confidential, secret,
top_secret);

-- This must be the first element of Classifications
Default_Classification:

constant Security_Types::Classifications =>

-- Default set of categories
Categories:

type enumeration (A, B, C, D);
end Security_Types;

property set Security_Attributes is
Class: inherit Security_Types::Classifications =>

value(Security_Types::Default_Classification)
applies to (data, subprogram, thread, thread group,

process, memory, processor, bus, device,
system, port, server subprogram,
parameter, port group);

Category: inherit list of Security_Types::Categories =>
()
applies to (data, subprogram, thread, thread group,

process, memory, processor, bus, device,
system, port, server subprogram,
parameter, port group);

-- . . .
end Security_Attributes;

Figure 5: Architectural Components to Which Security Levels and Requirements Can Be Connected

-- Property intended to be customized by modelers.
-- Parameterizes the security property definitions.
property set Security_Types is

-- Military levels by default
Classifications:

Type enumeration (unclassified, confidential, secret,
top_secret);

-- This must be the first element of Classifications
Default_Classification:

constant Security_Types::Classifications =>

-- Default set of categories
Categories:

type enumeration (A, B, C, D);
end Security_Types;

property set Security_Attributes is
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-- . . .
end Security_Attributes;

Figure 4: Specification of Security Levels
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and damage limitation. An example is
the SK Protection Profile [8].

2. Middleware service layer.
3. Application layer.

Thus, the MILS separates security
mechanisms and concerns into the follow-
ing three component types, classified by
how they process data:
• Single-Level Secure (SLS). Processes

data at one security level.
• Multiple Single-Level Secure (MSLS).

Processes data at multiple levels, but
maintains separations between classes
of data.

• MLS. Processes data at multiple levels
simultaneously and transforms data
from one level to another.
The strength of the MILS architecture

lies in its reductionist approach to decom-
pose a system into components of the
above-mentioned types that would be more
manageable to certify. These components
are also mapped to partitions (and, as men-
tioned earlier, the MILS architecture
approach builds on partitioning as one key
concept to enforce damage limitation and
separation of time and space).

An MBE approach is conducive to the
validation concerns most critical to MILS,
including:
• Validating the structural rigidity of

architecture, such as the enforce-
ment of legal architectural refine-
ment patterns of a security compo-
nent into SLS, MSLS, and MLS
types. Given that an MILS architecture
design and system is decomposed into
security components that can be certi-
fied in isolation, the structural rigidity
concerns the legal mappings and con-
nections of the components. The
decomposition into SLS, MSLS, and
MLS types can be applied to compo-
nents, connectors, and ports.
Furthermore, each component can be
divided into parts using the product,
cascade, or feedback decomposition
patterns [10, 11, 12]. For example, an
MSLS component with n security levels
can be decomposed into n distinct SLS
components. Thus, confidence in the
validation of an architecture increases
with the fidelity of the modeling. By
using an architectural model in AADL
to capture the security types and multi-
ple architectural levels, MBE analysis is
conducted to validate the correctness of
the decompositions and mappings.

• Architectural modeling and valida-
tion of assumptions underlying
MILS. Fundamental to enforcement of
security in an MILS architecture is hav-
ing a system that supports partitioning,
specifically damage limitation and sepa-

ration in time and space. By partitioning
the system, one minimizes the risk of
illegal component interactions among
components and protects components
from the faulty behavior. This can be
realized in the system architecture by
ensuring fault-containment and deploy-
ing security-cognizant memory alloca-
tion so that MILS components and
tasks reside in protected memory
spaces – and do not co-reside in the
same memory space if they differ in
security levels. Similarly, separation in
time can be ensured through avoiding
the interleaved execution of tasks with
different security levels, realized in par-
tition scheduling and validating execu-
tion behaviors. The AADL supports
the modeling of partitions and virtual
processors. As well, the virtual machine
mechanism is recognized as a key con-
cept for providing robustness through
fault containment because it provides
time and space partitioning to isolate
application components and subsys-
tems from affecting each other (due to
sharing of resources). This architecture
pattern can be found in the
Aeronautical Radio Incorporated
(ARINC) 653 standard [13]. A single-
source architectural model in AADL
can thus be used to validate the security
requirement in an architectural context,
specifically the MILS composition, and
the architectural assumptions required.

• Validating requirements specific to
the NEAT characteristics and the
communication system. MILS re-
quires that its SK and the trusted com-
ponents of middleware services are
implemented so that the security capa-
bilities enforce what is commonly
referred to as the NEAT characteristics:
° NNon-bypassable. Security func-

tions cannot be circumvented.
° EE valuatable. The size and com-

plexity of the security functions
allow them to be verified and
evaluated.

° AA lways invoked. Security func-
tions are invoked each and
every time without exception.

° TTamperproof. Subversive code
cannot alter the function of the
security functions by exhaust-
ing resources, overrunning
buffers, or other forms of mak-
ing the security software fail.

The MBE approach allows designers to
assure that software applications execute on
top of a secure operating system, map to a
protected and secured hardware memory
space, and communicate over secure com-
munication channels. It also enables the

analysis of security measures early and
throughout the development life cycle.

Conclusions
The objective of a secure system implies
that security clearances are given conserva-
tively. The MBE approach supports this
objective through enabling analysis of the
architectural model to derive the minimum
security clearance on components. By pro-
viding mechanisms to ensure that sanitiza-
tion is conducted within allowed bound-
aries, the MBE approach enables the sys-
tem designer to analyze and trace more
threatening security risks, since sanitizing
actions are permitted exemptions of securi-
ty criteria and rules, and as such should be
minimized in the system.

Security analysis using the MBE ap-
proach also supports:
• The evaluation of an architecture con-

figuration with respect to impact on
other non-functional attributes, such as
increases in power consumption, band-
width usage, and performance.

• The validation of architectural require-
ments necessary to enforce the MILS
approach to containing faults, through
partitioning and separation in time and
space.

• A reduction of the effort necessary for
re-certification in the event of architec-
tural changes.
Furthermore, validation of security can

be conducted at multiple layers and differ-
ent levels of fidelity, early and throughout
the development life cycle.u
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Notes
1. A NIST study observed that 70 percent

of all defects are introduced prior to
implementation. Yet only 3.5 percent of
the defects were detected in these phas-
es, while 50.5 percent of the faults were
detected in the integration phase. The
defect removal cost ranged from 5 to 30
times relative to the cost of removing
the defect in the phase of introduction
(if it had been detected). Other sources
are reporting similar estimates; while
the numbers vary, the conclusions do
not [14].

2. The AADL, an international industry
standard, incorporates an XML/XMI
exchange format to support model
interchange and tool chaining. AADL

also can be used (1) with UML state and
process charts through its UML profile,
(2) to drill into root causes and develop
quantitative analysis as a follow-up to
the SEI Architecture Tradeoff Analysis
Method®, and (3) in conjunction with
assurance cases, to support claims made
about the safety, security, or reliability of
a system. The freely available OSATE
includes analysis plugins for perfor-
mance, resource consumption, security,
and reliability.

3. The principle of least privilege has been
identified as important for meeting
integrity objectives; it requires that a
user (subject) be given no more privi-
lege than necessary to perform a job.
This principle includes identifying what
the subject’s job requires and restricting
the subject’s ability by granting the min-
imum set of privileges required.

4. MILS has been proposed as an approach
to building secure systems [9, 10]. MILS
is a joint research effort of academia,
industry, and government, led by the
U.S. Air Force Research Laboratory. The
MILS approach is based on the notion
of separating – and thus limiting the
scope and reducing the complexity of –
the security mechanisms.
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