
Static analysis has commonly been
known as a technique for finding

violations of superficial stylistic pro-
gramming rules, and for alerting pro-
grammers to typing discrepancies in
type-unsafe languages. The latest static-
analysis tools go far beyond this, and
are capable of finding serious errors in
programs such as null-pointer de-refer-
ences, buffer overruns, race conditions,
resource leaks, and other errors. They
can do so without requiring additional
input from the users, and without
requiring changes to development
processes or practices. Actionable
results are produced quickly with a low
level of false positives. These static-
analysis tools are not a silver bullet,
however, because they can never prove
that a program is completely free of
flaws. The following is a description of
how static-analysis tools work, followed
by a discussion of how they can be used
to complement traditional testing.

How Static Analysis Finds
Flaws
The first thing a static analysis tool
must do is identify the code to be ana-
lyzed. The source files that must be
compiled to create a program may be
scattered across many directories, and
may be mixed in with other source code
that is not used for that program. Static
analysis tools operate much like compil-
ers so they must be able to identify
exactly which source files contribute
and should ignore those that do not.
The scripts or build system that builds
the executable obviously know which
files to use, so the best static analysis
tools can extract this information by
reading those scripts directly or by
observing the build system in action.
This way the tool gets to see not only
the source files but also which compiler
is being used and any command-line
flags that were passed in. The parser
that the static analysis tool uses must

interpret the source code in the same
way that the real compiler does. It does
this by modeling how the real compile
works as closely as possible. The com-
mand-line flags are an essential input to
that.

As the build system progresses, each
invocation of the compiler is used to
create a whole program model of the

program. This model consists of a set
of abstract representations of the
source, and is similar to what a compil-
er might generate as an intermediate
representation. It includes the control-
flow graph, the call graph, and infor-
mation about symbols such as variables
and type names.

Once the model has been created,
the analysis performs a symbolic execu-
tion on it. This can be thought of as a
simulation of a real execution. Whereas
a real execution would use concrete val-
ues in variables, the symbolic execution
uses abstract values instead. This execu-
tion explores paths and, as it proceeds,
if any anomalies are observed, they are
reported as warnings. This approach is
based on abstract interpretation [1] and
model checking [2].

The analysis is path-sensitive, which
means that it can compute properties of

individual paths through the program.
This is important because it means that
when a warning is reported, the tool
can tell the user the path along which
execution must proceed in order for the
flaw to be manifest. Tools also usually
indicate the points along that path
where relevant transformations occur
and conditions on the data values that
must hold. These help users understand
the result and how to correct the prob-
lem should it be confirmed.

Once a set of warnings have been
issued, these tools offer features to help
the user manage the results, including
allowing the user to manually label indi-
vidual warnings. Warnings that corre-
spond to real flaws can be labeled as
true positives. Warnings that are false
alarms can be labeled as false positives.
Warnings that are technically true posi-
tives but which are benign can be
labeled as don’t care. Most tools offer
features that allow the user to suppress
reporting of such warnings in subse-
quent analyses.

Limitations of Static
Analysis
In order to understand the limitations
of the techniques that these tools use, it
is important to understand the metrics
used to assess their performance. The
first metric, recall, is a measure of the
ability of the tool to find real problems.
Recall is measured as the number of
flaws found divided by all flaws present.
The second metric is precision, which
measures the ability of the tool to
exclude false positives. It is the ratio of
true positives to all warnings reported.
The third metric is performance.
Although not formally defined, this is a
measure of the computing resources
needed to generate the results.

These three metrics usually operate
in opposition to each other. It is easy to
create a tool that has perfect precision
and excellent performance – one that

The Use and Limitations of Static-Analysis
Tools to Improve Software Quality

Dr. Paul Anderson
GrammaTech, Inc.

Advanced static-analysis tools have been found to be effective at finding defects that jeopardize system safety and security. This
article describes how these work and outlines their limitations. They are best used in combination with traditional dynamic
testing techniques, and can even reduce the cost to create and manage test cases for stringent run-time coverage.

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering June 2008

“In order to understand
the limitations of

the techniques that
these tools use, it is

important to understand
the metrics used
to assess their
performance.”

The Use and Limitations of Static-Analysis Tools to Improve Software Quality

June 2008 www.stsc.hill.af.mil 19

reports no lines contain flaws will satis-
fy because it reports no false positives.
Similarly, it is easy to create a tool with
perfect recall and excellent perfor-
mance – one that reports that all lines
have errors will answer because it
reports no false negatives. Clearly, how-
ever, neither tool is of any use whatso-
ever.

Finally, it is at least theoretically pos-
sible to write an analyzer that would
have excellent precision and excellent
recall given enough time and access to
enough processing power. Whether
such a tool would be as useless as the
previous two example tools is debatable
and would depend on just how much
time it would take. What is clear is that
no such tools currently exist and to cre-
ate them would be very difficult.

As a result, all tools occupy a middle
ground around a sweet spot that devel-
opers find most useful. Developers
expect analyses to complete in time
roughly proportional to the size of
their code base and within hours rather
than days. Tools that take longer simply
do not get used because they take too
long. Low precision means more false
positives, which has an insidious effect
on users. As precision goes down, even
true positive warnings are more likely to
be erroneously judged as false positives
because the users lose trust in the tool.

For most classes of flaws, precision
less than 80 percent is unacceptable.
For more serious flaws, however, preci-
sion as low as five percent may be
acceptable if the code is to be deployed
in very risky environments. It is diffi-
cult to quantify acceptable values for
recall as it is impossible to measure
accurately in practice, but clearly users
would not bother using these tools at all
if they did not find serious flaws that
escape detection by other means.

Each of these constraints intro-
duces its own set of limitations, howev-
er they are all interrelated. The reasons
that lead to low recall are explained in
more detail in the following sections.

Path Limitations
As mentioned earlier, these analyses are
path sensitive. This improves both
recall and precision and is probably the
key aspect of these products that makes
them most useful. A full exploration of
all paths through the program would be
very expensive. If there are n branch
points in a procedure, and there are no
loops in that procedure, then the num-
ber of intraprocedural paths through
that procedure can be as many as 2n. In

practice, this is fewer because some
branches are correlated, but the asymp-
totic behavior remains. If procedure
calls and returns are taken into account,
the number of paths is doubly exponen-
tial, and if loops are taken into account
then the number of paths is unbound-
ed. Clearly it is not possible for a tool to
explore all of these paths. The tools
restrict their exploration in two ways.
First, loops are handled by exploring a
small fixed number of iterations: often,
the first time around the loop is singled
out as special, and all other iterations
are considered en masse and represent-
ed by an approximation. Second, not all
paths are explored. It is typical for an
analysis to place an upper bound on the
number of paths explored in a particu-

lar procedure or on the amount of time
available, and a selection of those
remaining paths are explored.

If asynchronous paths can occur
(such as those caused by interrupts or
exceptions) or if the program uses con-
currency, then the number of possible
paths to consider increases further.
Many tools simply ignore these possi-
bilities. Finally, most tools also ignore
recursive function calls, and function
calls that are made through function
pointers (or make very coarse approxi-
mations) as considering these also con-
tributes to poor performance and poor
precision.

Abstract Domain
As previously mentioned, these tools
work by exploring paths and looking
for anomalies in the abstract state of

the program. The appeal of the sym-
bolic execution is that each abstract
state represents potentially many possi-
ble concrete states. For example, given
an 8-bit variable x, there are 28 possible
concrete values: 0, 1, …, 255. The sym-
bolic execution, however, might repre-
sent the value as two abstract states:
x=0, and x>0. So where a concrete exe-
cution has 256 states to explore, the
symbolic execution has only two.

As such, the expressivity of this
abstract domain is an important factor
that determines the effectiveness of the
analysis. Again, there is a trade-off
here: better precision and recall can be
achieved by more sophisticated abstract
domains, but more resources will then
be required to complete an analysis.
Values in the abstract domain are equa-
tions that represent constraints on val-
ues, i.e., x=0, or y>10. As the analysis
progresses, a constraint solver is used
to combine and simplify these equa-
tions. A key characteristic of these
abstract domains is that there is a spe-
cial value, usually named bottom, which
indicates that the analysis knows no
useful information about the actual
value. Bottom is the abstract value that
corresponds to all possible concrete
values. Reaching bottom is impossible
to avoid for any non-trivial abstraction
in general as this would require solving
the halting problem. Once bottom is
reached, the analysis has a choice of
treating it as a potentially dangerous
value, which would increase recall, or as
a probably safe value, which would
increase precision. Most tools opt for
the latter as the former also has the
effect of decreasing precision enor-
mously.

If there are program constructs that
step outside the bounds of what can be
expressed in the abstract domain, this
causes the analysis to lose track of vari-
ables and their relationships. For exam-
ple, an abstract domain that allows the
expression of affine relationships
between no more than two variables
admits expressions such as x=2y.
However, something such as x=y+z is
out of bounds because it involves three
variables and the analysis would be
forced to conclude x=bottom instead.

The consequence of this is the
abstract domain that a tool uses deter-
mines a great deal about the kind of
flaws that it is capable of detecting. For
example, if the tool uses an abstract
domain of affine relations between two
variables, then it may fail to find flaws
that depend on three variables.

“If asynchronous paths
can occur (such as those
caused by interrupts or

exceptions) or if the
program uses concurrency,

then the number of
possible paths to
consider increases
further. Many tools
simply ignore the

possibilities.”

Software Engineering Technology

Similarly, most tools choose a domain
that allows them to reason about the
values of integers and addresses but
not floating-point values, so they will
fail to find flaws in floating-point arith-
metic (such as divide by zero).

Missing Source Code
If the source code to a part of a pro-
gram is not available, as is almost always
the case because of operating system
and third-party libraries, or if the code
is written in a language not recognized
by the analysis tool, then the analysis
must make some assumptions about
how that missing code operates. Take,
for example, a call to a function in a
third-party library that takes a single
pointer-typed parameter and returns an
integer. In the absence of any other
information, most analyses will assume
that the function does nothing and
returns an unknown value. This clearly
is not realistic, but it is not practical to
do better in general. The function may
de-reference its pointer parameter, it
may read or write any global variable
that is in scope, it may return an integer
from a particular range, or it may even
abort execution. If the analysis knew
this, it would have better precision and

recall but it is forced to make the sim-
ple assumption unless told otherwise.

There are two approaches around
this. First, if source is not available but
object code is, then the analysis could
be extended into the object code. This
is a highly attractive solution but no
products are available yet. The techno-
logical basis for such a tool exists, how-
ever [3], and it is expected that products
capable of analyzing object code as well
as C/C++ will appear.

A second approach to the problem
is to specify stubs, or models, that sum-
marize key aspects of the missing
source code. The popular analysis tools
provide models for commonly used
libraries such as the C library. These
models only have to approximate the
behavior of the code. Users can, of
course, write these themselves for their
own libraries but it can be a tricky and
time-consuming effort.

Out of Scope
There are, of course, entire classes of
flaws that static analysis is unlikely ever
to be able to detect. Static analysis excels
at finding places where the fundamental
rules of the language are being violated
such as buffer overruns, or where com-

monly used libraries are being used
incorrectly, or where there are inconsis-
tencies in the code that indicate misun-
derstanding. If the code does the wrong
thing for some other reason, but does
not then terminate abnormally, then sta-
tic analysis is unlikely to be able to help
because it is unable to divine the intent
of the author. For example, if a function
is intended to sort in ascending order,
but perfectly sorts in descending order
instead, then static analysis will not help
much. This kind of functionality testing
is what traditional dynamic testing is
good for.

Static Analysis and Testing
Static analysis should never be seriously
considered as a replacement for tradi-
tional dynamic testing activities. Rather,
it should be thought of as a way of
amplifying the software assurance effort.
The cheapest bug to find is the one that
gets found earliest, and as static analysis
can be used very early in the develop-
ment cycle, its use can reduce the cost of
development and liberate resources for
use elsewhere. This is the traditional
view of how static analysis can reduce
testing costs. However, there is a second
way in which the use of static analysis
can reduce the cost of testing: it makes
it easier to achieve full coverage.

One measure of the effectiveness of a
test suite is how well it exercises or covers
the code being tested. There are many dif-
ferent kinds of coverage. Statement cover-
age is the most common, but for riskier
code more stringent forms are often
required. Decision coverage is a superset
of statement coverage, and requires that all
branches in the control flow of the pro-
gram are taken. In DO-178B, a develop-
ment standard for flight software [4], the
riskiest code is required to be tested with
100 percent modified condition/decision
coverage (MCDC). This means that a test
suite must be chosen such that all sub-
expressions in all conditionals are evaluat-
ed to both true and false. Table 1 illustrates
how many different test cases are needed
for each to achieve coverage. For the code
sample on the left, the values required of
the boolean variables a, b, and c to achieve
each form of coverage is shown on the
right.

Achieving full coverage, even for
statement coverage, can be very time
consuming. The engineer creating the
test case must figure out what inputs
must be given to drive the program to
each statement. What can make it very
frustrating is if it is fundamentally
impossible to do so, but this may not be

20 CROSSTALK The Journal of Defense Software Engineering June 2008

.

Coverage a b c

Statement T - -
Decision T - -

F F F
MCDC T - -

F T -
F F T

if (a || b || c)
x = 0;

F F F

Table 1: Test Cases Needed for Statement, Decision, and MCDC Coverage

Never True:
($temp2 & 16) != 0

8

9
10
11
12

if (!flags & MASK) /*Redundant Condition */

{
error(”Cannot sign packet”);
return;

}

Figure 1: A Redundant Condition Warning

Always True:
rest > 1

5
6
7
8
9

10
11
12

13
14
15

c:\CodeSonar\ex2.c
Enter foo
void foo (int rest, int length)

{
if (rest <=1)

buf[pos-1] = ‘>’;
else if (rest == 2)

buf[pos++] = ‘>’;
else if (length > rest)

if (--rest > 1) { /* Redundant Condition (ID: 1) */

if (rest >= 2)
rest --;

}

Figure 2: A Second Redundant Condition Warning

The Use and Limitations of Static-Analysis Tools to Improve Software Quality

apparent simply by looking at the code.
If the program contains unreachable
code, then statement coverage is impos-
sible. If it contains redundant conditions
(those that are either always true or
always false), then MCDC is impossible.
Developers can spend hours trying to
refine a test case before it is evident that
their efforts are pointless.

If the unreachable code or redun-
dant conditions can be brought to the
attention of the tester early, then they do
not need to waste time in a futile attempt
to achieve the impossible. This is what
static analysis can do easily and efficient-
ly. Figure 1 shows an example of a
report from CodeSonar1 illustrating a
redundant condition in a sample of code
taken from an open-source application.
The variable rest, an unaliased integer,
must be at least three by line 12. The
decrement on that line means it is at
least two, so the condition will always be
true. The following line is also redun-
dant and shown in a different report.

In this example, all the components
of the code relevant to the redundancy
are in close proximity so it is likely that a
reviewer would have spotted this during
a manual review. It would not have been
so easy to spot if the code were more
complex. If the code had spanned sev-
eral pages, or if relevant parts had been
embedded in function calls or macro
invocations, then it would have been dif-
ficult to spot. Static analysis is not sensi-
tive to superficial aspects of the code
such as its layout, so it would not have
been confused.

These kinds of redundancies corre-
late well with genuine flaws as well; for
example, consider the example in Figure
2. This was distilled from a genuine flaw
found in a widely used open-source pro-
gram, and is a redundant condition
warning where the tool has deduced that
the true branch of the conditional will
never be taken. The reason why it con-
cluded so is shown to the left. The first
operand to the bitwise AND (the & sym-
bol) is either zero or one as this is the
range of the negation operator (the !
symbol). This is what is represented by
$temp2. The constant MASK has the
value 16. The result of the AND expres-
sions 1&16 and 0&16 are both zero, so
the conditional expression is guaranteed
to be zero.

The programmer who wrote this
code probably misunderstood the prece-
dence of the operators in the condition-
al expression and assumed that the
innermost operator had higher prece-
dence. If so, then a correction would be

to place parentheses around the inner
expression. This is a potentially danger-
ous flaw as it means that the error con-
dition would not be detected, which
could result in unpredictable behavior.

When to Use Static Analysis
Tools
The best time to use advanced static
analysis tools is early in the development
cycle. In Holzmann’s 10 rules for safety-
critical development [5], the most far-
reaching rule states that these tools
should be used throughout the develop-
ment process. As well as reducing the
cost of development by finding flaws
earlier and reducing testing effort, early
adoption exerts a force on programmers
to write code that is more amenable to
analysis, thereby increasing the probabil-
ity that the tool will find errors. Care
should be taken, however, to avoid a risk
compensation phenomenon, where pro-
grammers use less care because they
assume that the static analysis tool will
find their mistakes.

If adopted late in the development
cycle, static analysis may issue a large
number of warnings. The best value is
gained if these are all dealt with, either
by fixing the code, marking them as false
positives, or labeling them as don’t care if
they are believed to be benign. However,
if scheduling time to sift through these
is not feasible, then an alternative strate-
gy is to operate in a differential mode,
where programmers are only told about
new warnings. This way they are alerted
to flaws in code that they are working
with while it remains fresh in their
minds.

Conclusion
Advanced static analysis tools offer
much to help improve the quality of
software. The best tools are easy to inte-
grate into the development cycle, and
can yield high-quality results quickly
without requiring additional engineering
effort. They can be used not just for
finding flaws, but also to guide testing
activities. They use sophisticated sym-
bolic execution techniques for which
engineering trade-offs have been made
so that they can generate useful results
in a reasonable time. As such, they
inevitably have both false positives and
false negatives, and so should never be
considered a replacement for traditional
testing techniques.u

References
1. Cousot, P., and R. Cousot. “Abstract

Interpretation: A Unified Lattice
Model for Static Analysis of Programs
by Construction or Approximation of
Fixpoints.” ACM Symposium on
Principles of Programming Lan-
guages. Los Angeles, CA., 1977.

2. Clarke, E.M., O. Grumberg, and D.A.
Peled. Model Checking. MIT Press:
Cambridge, MA: 1999.

3. Balakrishnan, G., R. Gruian, T. Reps,
and T. Teitelbaum. “CodeSurfer/x86 –
A Platform for Analyzing x86
Executables.” International Confer-
ence on Compiler Construction. 2005.

4. RTCA/DO-178B. “Software Con-
siderations in Airborne Systems and
Equipment Certification.” 1992.

5. Holzmann, G.J. “The Power of 10:
Rules for Developing Safety-Critical
Code.” IEEE Computer 2006.

Note
1. GrammaTech’s static analysis tool.

June 2008 www.stsc.hill.af.mil 21

About the Author

Paul Anderson, Ph.D.,
is vice president of engi-
neering at GrammaTech,
a spin-off of Cornell
University that special-
izes in static analysis,

where he manages GrammaTech’s engi-
neering team and is the architect of the
company’s static analysis tools. He has
worked in the software industry for 16
years, with most of his experience
focused on developing static analysis,
automated testing, and program trans-
formation tools. A significant portion of
Anderson’s work has involved applying
program analysis to improve security.
His research on static analysis tools and
techniques has been reported in numer-
ous articles, journal publications, book
chapters, and international conferences.
Anderson has a B.Sc. from Kings
College, University of London, and his
doctorate in computer science from City
University, London.

GrammaTech, Inc.
317 N Aurora ST
Ithaca, NY 14850
Phone: (607) 273-7340
Fax: (607) 273-8752
E-mail: paul@grammatech.com

