
4 CROSSTALK The Journal of Defense Software Engineering June 2008

Today, many of the systems on which
our lives and livelihoods depend are

run by software. Whether we fly in air-
planes, file taxes, or wear pacemakers, our
safety and well being depend on software.
With each system enhancement, the size
and complexity of these systems increase,
as does the likelihood of serious prob-
lems. Defects in video games, reservations
systems, or accounting programs may be
inconvenient, but software defects in air-
craft, automobiles, air traffic control sys-
tems, nuclear power plants, and weapons
systems can be dangerous.

Everyone depends on transportation
networks, hospitals, medical devices, pub-
lic utilities, and the international financial
infrastructure. These systems are all run
by increasingly complex and potentially
defective software systems. Regardless of
whether these large life-critical systems are
newly developed or composed from mod-
ified legacy systems, to be safe or secure,
they must have quality levels of very few
defects per million parts.

Modern, large-scale systems typically
have enormous requirements documents,
large and complex designs, and millions of
lines of software code. Uncorrected errors
in any aspect of the design and develop-
ment process generally result in defects in
the operational systems. The defect levels
of such operational systems are typically
measured in defects per thousand lines of
code. A one million line-of-code system
with the typical quality level of one defect
per 1,000 lines would have 1,000 undis-
covered defects, while any reasonably safe
system of this scale must have only a very
few defects, certainly less than 10.

The Need for Quality
Software
Before condemning programmers for
doing sloppy work, it is appropriate to
consider the quality levels of other types
of printed media. A quick scan of most
books, magazines, and newspapers will
reveal at least one and generally more

defects per page while even poor-quality
software has much less than one defect
per listing page. This means that the qual-
ity level of even poor-quality software is
higher than that obtained for other kinds
of human written text. Programming is an
exacting business, and these professionals
are doing extraordinarily high quality
work. The only problem is that based on
historical trends, future systems will be
much larger and more complex than
today, meaning that just to maintain
today’s defect levels, we must do much
higher quality work in the future.

To appreciate the challenge of achiev-
ing 10 or fewer defects per million lines of
code, consider what the source listing for
such a program would look like. The list-
ing for a 1,000-line program would fill 40
text pages; a million-line program would
take 40,000 pages. Clearly, finding all but
10 defects in 40,000 pages of material is
humanly impossible. However, we now
have complex life-critical systems of this
scale and will have much larger ones in the
relatively near future. So we must do
something, but what? That is the question
addressed in this article.

Why Defective Systems Work
To understand the software quality prob-
lem, the first question we must answer is If
today’s software is so defective, why aren’t there
more software quality disasters? The answer is
that software is an amazing technology.
Once you test it and fix all of the prob-
lems found, that software will always work
under the conditions for which it was test-
ed. It will not wear out, rust, rot, or get
tired. The reason there are not more soft-
ware disasters is that testers have been
able to exercise these systems in just about
all of the ways they are typically used. So,
to solve the software quality problem, all
we must do is keep testing these systems
in all of the ways they will be used. So
what is the problem?

The problem is complexity. The more
complex these systems become, the more

different ways they can be used, and the
more ways users can use them, the harder
it is to test all of these conditions in
advance. This was the logic behind the
beta-testing strategy started at IBM with
the OS/360 system more than 40 years
ago. Early copies of the new system releas-
es were sent to a small number of trusted
users and IBM then fixed the problems
they found before releasing the public ver-
sion. This strategy was so successful that it
has become widely used by almost all ven-
dors of commercial software.

Unfortunately, however, the beta-test-
ing strategy is not suitable for life-critical
systems. The V-22 Osprey helicopter, for
example, uses a tilting wing and rotor sys-
tem in order to fly like an airplane and
land like a helicopter. In one test flight, the
hydraulic system failed just as the pilot was
tilting the wing to land. While the aircraft
had a built-in back-up system to handle
such failures, the aircraft had not been
tested under those precise conditions, and
the defect in the back-up system’s soft-
ware had not been found. The defect
caused the V-22 to become unstable and
crash, killing all aboard.

The problem is that as systems
become more complex, the number of
possible ways to use these systems grows
exponentially. The testing problem is fur-
ther complicated by the fact that the way
such systems are configured and the envi-
ronments in which they are used also
affect the way the software is executed.
Table 1 lists some of the variations that
must be considered in testing complex
systems. An examination of the number
of possibilities for even relatively simple
systems shows why it is impractical to test
all possibilities for any complex system. So
why is complex software so defective?

Some Facts
Software is and must remain a human-
produced product. While tools and tech-
niques have been devised to automate the
production of code once the requirements

The Software Quality Challenge
Watts S. Humphrey

The Software Engineering Institute

Many aspects of our lives are governed by large, complex systems with increasingly complex software, and the safety, securi-
ty, and reliability of these systems has become a major concern. As the software in today’s systems grows larger, it has more
defects, and these defects adversely affect the safety, security, and reliability of the systems. This article explains why the com-
mon test-and-fix software quality strategy is no longer adequate, and characterizes the properties of the quality strategy we
must pursue to solve the software quality problem in the future.

Software Quality

 



The Software Quality Challenge

June 2008 www.stsc.hill.af.mil 5

and design are known, the requirements
and design must be produced by people.
Further, as systems become increasingly
complex, their requirements and design
grow increasingly complex. This complex-
ity then leads to errors, and these errors
result in defects in the requirements,
design, and the operational code itself.
Thus, even if the code could be automati-
cally generated from the defective require-
ments and design, that code would reflect
these requirements and design defects
and, thus, still be defective.

When people design things, they make
mistakes. The larger and more complex
their designs, the more mistakes they are
likely to make. From course data on thou-
sands of experienced engineers learning
the Personal Software ProcessSM (PSPSM), it
has been found that developers typically
inject about 100 defects into every 1,000
lines of the code they write [1]. The distri-
bution for the total defects injected by 810
experienced developers at the beginning of
PSP training is shown by the total bars in
Figure 1. While there is considerable varia-
tion and some engineers do higher-quality
work, just about everybody injects defects.

Developers use various kinds of tools
to generate program code from their
designs, and they typically find and fix
about half of their defects during this
process. This means that about 50 defects
per 1,000 lines of code remain at the start
of initial testing. Again, the distribution of
the defects found in initial testing is also
shown by the test bars in Figure 1.

Developers generally test their pro-
grams until they run without obvious fail-
ures. Then they submit these programs to
systems integration and testing where they
are combined with other similar programs
into larger and larger sub-systems and sys-
tems for progressively larger-scale testing.
The defect content of programs entering
systems testing typically ranges between
10 and 20 defects per 1,000 lines.

The most disquieting fact is that test-
ing can only find a fraction of the defects
in a program. That is, the more defects a
program contains at test entry, the more it
is likely to have at test completion. The
reason for this is the point previously
made about extensive testing. Clearly, if
defects are randomly sprinkled through-
out a large and complex software system,
some of them will be in the most rarely
used parts of the system and others will
be in those parts that are only exercised
under failure conditions. Unfortunately,
these rarely used parts are the ones most

likely to be exercised when such systems
are subjected to the stresses of high trans-
action volume, accidents, failures, or mili-
tary combat.

The Defect Removal Problem
A defect is an incorrect or faulty con-
struction in a product. For software,
defects generally result from mistakes that
the designers or developers make as they
produce their products. Examples are
oversights, misunderstandings, and typos.
Furthermore, since defects result from
mistakes, they are not logical. As a conse-
quence, there is no logical or deductive
process that could possibly find all of the
defects in a system. They could be any-
where, and the only way to find all of the
defects with testing is to exhaustively test
every path, function, or system condition.

This leads to the next question which
concerns the testing objective: “Must we
find all of the defects, or couldn’t we just
find and fix those few that would be dan-
gerous?” Obviously, we only need to fix
the defects that would cause trouble, but
there is no way to determine which defects
these are without examining all of the

defects. For example, a complex design
defect that produced a confusing operator
message could pose no danger while a
trivial typographical mistake that changed
a no to a yes could be very dangerous.
Since there is no way to tell in advance
which defects would be damaging, we
must try to find them all. Then, after find-
ing them, we must fix at least all of the
ones that would be damaging.

The Testing Problem
Since defects could be anywhere in a large
software system, the only way testing
could find them all would be to complete-
ly test every segment of code in the entire
program. To understand this issue, consid-
er the program structure in Figure 2. This
code fragment has one branch instruction
at point B; three segments: A to B, B to C,
and B to D; and two possible paths or
routes through the fragment: A-B-C and
A-B-D. So, for a program fragment like
this, there could be defects on any of the
code segments as well as in the branch
instruction itself.

For a large program, the numbers of
possible paths or routes through a pro-
gram can vary by program type, but pro-

1. Data rates
2. Data values
3. Data errors
4. Configuration variations
5. Number, type, and timing of

simultaneous processes
6. Hardware failures
7. Network failures
8. Operator errors
9. Version changes
10. Power variations

300

250

200

150

100

50

0
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Total

Test

To
ta
l
d
e
fe
c
ts
/

th
o
u
s
a
n
d
li
n
e
s
o
f
c
o
d
e

Figure 1: Total and Test Defect Rates of 810 Experienced Engineers

1. Data rates
2. Data values
3. Data errors
4. Configuration variations
5. Number, type, and timing of

simultaneous processes
6. Hardware failures
7. Network failures
8. Operator errors
9. Version changes
10. Power variations

300

250

200

150

100

50

0
1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Total

Test

To
ta
ld
ef
ec
ts
/

th
o
u
sa
n
d
lin
es
o
f
co
d
e

A

D

C

B

Table 1: Some of the Possible Testing
Variations

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

Switches Paths

1 2
4 6
9 20
16 70
36 924
49 3,432
64 12,870
81 48,620
100 184,756
400 1.38E+11

A

Design/Code

Unit Test D/KLOC

Design Review Time

Table 2: Possible Paths Through a Network



Software Quality

grams generally have about one branch
instruction for every 10 or so lines of code.
This means that a million-line program
would typically have about 100,000 branch
instructions. To determine the magnitude
of the testing problem for such a system,
we must determine the number of test
paths through a network of 100,000
switches. Here, from Figure 3, we can cal-
culate that, for a simple network of 16
switches, there are 70 possible paths from
A to B. As shown in Table 2, the number of
possible paths through larger networks
grows rapidly with 100 switches having
184,756 possible paths and 400 switches
having 1.38E+11 possible paths. Clearly,
the number of possible paths through a
system with 100,000 switches could, for

practical purposes, be considered infinite.
Furthermore, even if comprehensive path
testing were possible, more than path test-
ing would be required to uncover the
defects that involved timing, synchroniza-
tion, or unusual operational conditions.

Conclusions on Testing
At this point, several conclusions can be
drawn. First, today’s large-scale systems
typically have many defects. Second, these
defects generally do not cause problems
as long as the systems are used in ways
that have been tested. Third, because of
the growing complexity of modern sys-
tems, it is impossible to test all of the
ways in which such systems could be
used. Fourth, when systems are stressed

in unusual ways, their software is most
likely to encounter undiscovered defects.
Fifth, under these stressful conditions,
these systems are least likely to operate
correctly or reliably.

Therefore, with the current commonly
used test-based software quality strategy,
large-scale life-critical systems will be least
reliable in emergencies – and that is when
reliability is most important.

Successful Quality Strategies
Organizations have reached quality levels
of a few defects per million parts, but these
have been with manufacturing and not
design or development processes. In the
manufacturing context, the repetitive work
is performed by machines, and the quality
challenge is to consistently and properly
follow all of the following steps:
• Establish quality policies, goals, and

plans.
• Properly set up the machines.
• Keep the machines supplied with high-

quality parts and materials.
• Maintain the entire process under con-

tinuous statistical control.
• Evaluate the machine outputs.
• Properly handle all deviations and

problems.
• Suitably package, distribute, or other-

wise handle the machine outputs.
• Consistently strive to improve all

aspects of the production and evalua-
tion processes.
While these eight steps suggest some

approaches to consider for software devel-
opment, they are not directly applicable for
human-intensive work such as design and
development. However, by considering an
analogous approach with people instead of
machines, we begin to see how to proceed.

The Eight Elements of
Software Quality Management 
The eight steps required to consistently
produce quality software are based on the
five basic principles of software quality
shown in the Software Quality Principles
sidebar. With these principles in mind, we
can now define the eight steps required for
an effective software quality initiative.
1. Establish quality policies, goals, and

plans.
2. Properly train, coach, and support the

developers and their teams.
3. Establish and maintain a requirements

quality-management process.
4. Establish and maintain statistical con-

trol of the software engineering process.
5. Review, inspect, and evaluate all prod-

uct artifacts.
6. Evaluate all defects for correction and

6 CROSSTALK The Journal of Defense Software Engineering June 2008

A

D

C

B

Figure 2: A Three-Segment Code Fragment

2

Switches Paths

Possible
Path

A

B
Figure 3: Possible Paths Through a 16-Switch Network



June 2008 www.stsc.hill.af.mil 7

The Software Quality Challenge

to identify, fix, and prevent other simi-
lar problems.

7. Establish and maintain a configuration
management and change control sys-
tem.

8. Continually improve the development
process.
The following sections discuss each of

these eight steps and relate them to the
software quality principles as shown in the
sidebar.

Step 1: Quality Policies, Goals, and
Plans
Policies, goals, and plans go together and
form the essential foundation for all effec-
tive quality programs. The fundamental
policy that forms the foundation for the
quality program is that quality is and must
be the first priority. Many software devel-
opers, managers, and customers would
argue that product function is critical and
that project schedule and program cost are
every bit as important as quality. In fact,
they will argue that cost, schedule, and
quality must be traded off.

The reason this is a policy issue is given
in the first principle of software quality
stated in the sidebar: Properly managed quali-
ty programs reduce total program cost, increase
business value and quality of delivered products,
and shorten development times. Customers
must demand quality work from their sup-
pliers and management must believe that if
the quality program increases program
costs or schedules, that quality program is
not properly managed. There is, in fact, no
cost/schedule/quality trade-off: manage
quality properly, and cost and schedule
improvements will follow. Everyone in the
organization must understand and accept
this point: it is always faster and cheaper to
do the job right the first time than it is to
waste time fixing defective products after
they have been developed.

Once the basic quality policy is in
place, customers, managers, and develop-
ers must then establish and agree on the
quality goals for each project. The princi-
pal goal must be to find and remove all
defects in the program at the earliest pos-
sible time, with the overall objective of
removing all defects before the start of
integration and system test. With the goals
established, the development teams must
make measurable quality plans that can be
tracked and assessed to ensure that the
project is producing quality work. This in
turn requires that the quality of the work
be measured at every step, and that the
quality data be reviewed and assessed by

the developers, their teams, management,
and the customer. When defective work is
found, it must be promptly fixed. The
principle is that defects cost money. The
longer they are left in the product, the
more work will be built on this defective
foundation, and the more it will cost to
find and fix them [2].

Step 2:Train and Coach Developers
and Teams 
Quality work is not done by accident; it
takes dedicated effort and properly skilled
and motivated professionals. The third
principle of software quality is absolutely
essential: The developers must feel personally
responsible for the quality of the products they pro-
duce. If they do not, they will not strive to
produce quality results, and later trying to
find and fix their defects will be costly,
time consuming, and ineffective.
Convincing developers that quality is their
personal responsibility and teaching them

the skills required to measure and manage
the quality of their work, requires training.
While it would be most desirable for them
to get this skill and the required knowledge
before they graduate from college, practic-
ing software developers must generally
learn them from using methods such as
the PSP.

With properly trained developers, the
development teams then need proper
management, leadership, and coaching.
Again, the Team Software ProcessSM
(TSPSM) can provide this guidance and sup-
port [3, 4, 5].

Step 3: Manage Requirements
Quality
One fundamental truth of all quality pro-
grams is that you must start with a quality
foundation to have any hope of producing
a quality result. In software, requirements
are the foundation for everything we do,
so the quality of requirements is para-

Software Quality Principles*
1. Properly managed quality programs reduce total program cost, increase business

value and quality of delivered products, and shorten development times.
1.1. If cost or development times increase, the quality program is not being proper-

ly implemented. 
1.2. The size of a product, including periodic reevaluation of size as changes occur,

must be estimated and tracked. 
1.3. Schedules, budgets, and quality commitments must be mutually consistent and

based on sound historical data and estimating methods.
1.4. The development approach must be consistent with the rate of change in

requirements.
2. To get quality work, the customer must demand it.

2.1. Attributes that define quality for a software product must be stated in measur-
able terms and formally agreed to between developers and customers as part
of the contract. Any instance of deviation from a specified attribute is a defect.

2.2. The contract shall specify the agreed upon quality level, stated in terms of the
acceptable quantity or ratio of deviations (defects) in the delivered product. 

3. The developers must feel personally responsible for the quality of the products they
produce.
3.1. The development teams must plan their own work and negotiate their commit-

ments with management and the customer.
3.2. Software managers must provide appropriate training for developers.
3.3. A developer is anyone who produces a part of the product, be it a designer, doc-

umenter, coder, or systems designer.
4. For the proper management of software development projects, the development

teams themselves must plan, measure, and control the work.
4.1. Project teams must have knowledge and experience in the relevant technolo-

gies and applications domains commensurate with project size and other risk
factors.

4.2. Removal yield at each step and in total pre-delivery must be measured.
4.3. Effort associated with each activity must be recorded. 
4.4. Defects discovered by each appraisal method must be recorded. 
4.5. Measurements must be recorded by those performing the activity and be ana-

lyzed by both developers and managers. 
5. Software management must recognize and reward quality work.

5.1. Projects must utilize a combination of appraisal methods sufficient to verify the
agreed defect levels. 

5.2. Managers must use measures to ensure high quality and improve processes. 
5.3. Managers must use measurements with due respect for individuals.

* These principles were defined by a group of 13 software quality experts convened by Taz Daughtrey. The
experts are: Carol Dekkers, Gary Gack, Tom Gilb, Watts Humphrey, Joe Jarzombek, Capers Jones, Stephen
Kan, Herb Krasner, Gary McGraw, Patricia McQuaid, Mark Paulk, Colin Tully, and Jerry Weinberg.

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.



Software Quality

mount. However, the requirements quality
problem is complicated by two facts.

First, the quality measures must not be
abstract characteristics of a requirements
document; they should be precise and mea-
surable items such as defect counts from
requirements inspections or counts of
requirements defects found in system test
or customer use. However, to be most help-
ful, these quality measures must also address
the precise understanding the developers
themselves have of the requirements
regardless of what the requirements origi-
nators believe or how good a requirements
document has been produced. The develop-
ers will build what they believe the require-
ments say and not what the requirements
developers intended to say. This means that
the quality-management problem the
requirements process must address is the
transfer of understanding from the require-
ments experts to the software developers.

The second key requirements fact is
that the requirements are dynamic. As peo-
ple learn more about what the users need
and what the developers can build, their
views of what is needed will change. This
fact enormously complicates the require-
ments-management problem. The reason
is that people’s understanding of their
needs evolves gradually and often without
any conscious appreciation of how much
their views have changed. There is also a
time lag: Even when the users know that
their needs have changed, it takes time for
them to truly understand their new ideas
and to communicate them to the develop-
ers. Even after the developers understand
the changes, they cannot just drop every-
thing and switch to the new version.

To implement a change, the design and
implementation implications of every
requirements change must be appraised;
plans, costs, and commitments adjusted;

and agreement reached on how to incor-
porate this new understanding into the
development work. This means that the
requirements must be recognized as evolv-
ing through a sequence of versions while
the development estimates, plans, and
commitments are progressing through a
similar but delayed sequence of versions.
And finally, the product itself will ulti-
mately be produced in a further delayed
sequence of versions. The quality manage-
ment problem concerns managing the
quality and maintaining the synchroniza-
tion of this sequence of parallel require-
ments, plan, design, and product versions.

Step 4: Statistical Process Control
While statistical process control is a large
subject, we need only discuss two aspects:
process management and continuous
process improvement. The first aspect,
process management, is discussed here,
and process improvement is addressed in
Step 8.

The first step in statistical process
management is to redefine the quality
management strategy. To achieve high lev-
els of software quality, it is necessary to
switch from looking for defects to manag-
ing the process. As noted earlier, to achieve
a quality level of 10 defects per million
lines with current software quality manage-
ment methods, the developers would have
to find and fix all but 10 of the 10,000 to
20,000 defects in a program with a 40,000
page listing. Unless someone devises a
magic machine that could flawlessly identi-
fy every software defect, it would be clear-
ly impossible to improve human search
and analysis skills to this degree.
Therefore, achieving these quality levels
through better testing, reviews, or inspec-
tions is not feasible.

A more practical strategy is to measure

and manage the quality of the process used
to produce the program’s parts. If, for
example, we could devise a process that
would consistently produce 1,000-line
modules that each had less than a one per-
cent chance of having a single defect, a sys-
tem of 1,000 of these modules would like-
ly have less than 10 defects per million
lines. One obvious problem with this strat-
egy concerns our ability to devise and
properly use such a process.

There has been considerable progress
in producing and using such a process.
This is accomplished by measuring each
developer’s process and producing a
Process Quality Index (PQI). The TSP
quality profile, which forms the basis for
the PQI measure, is shown in Figure 5 [6].
Then, the developers and their teams use
standard statistical process management
techniques to manage the quality of all
dimensions of the development work [7].
Data on early TSP teams show that by fol-
lowing this practice, quality is substantially
improved [8].

Step 5: Quality Evaluation
Quality evaluation has two elements: eval-
uating the quality of the process used to
produce each product element, and evalu-
ating the quality of the products produced
by that process. The reason to measure
and evaluate process quality, of course, is
to guide the process-improvement activi-
ties discussed in Step 8. The Capability
Maturity Model® Integration (CMMI®)
model and appraisal methods were devel-
oped to guide process-quality assessments,
and the TSP process was developed to
guide organizations in defining, using, and
improving high-quality processes as well
as in measuring, managing, and evaluating
product quality.

To evaluate process quality, the devel-
opers and their teams must gather data on
their work, and then evaluate these data
against the goals they established in their
quality plan. If any process or process
step falls below the team-defined quality
threshold, the resulting products must be
evaluated for repair, redevelopment, or
replacement, and the process must be
brought into conformance. These actions
must be taken for every process step and
especially before releasing any products
from development into testing. In product
evaluation, the system integration and
testing activities are also measured and
evaluated to determine if the final product
has reached a suitable quality level or if
some remedial action is required.

8 CROSSTALK The Journal of Defense Software Engineering June 2008

2

Switches Paths

1 2
4 6
9 20
16 70
36 924
49 3,432
64 12,870
81 48,620
100 184,756
400 1.38E+11

Possible
Path

A

B

Design/Code Time

Compile D/KLOC

Code Review TimeUnit Test D/KLOC

Design Review Time

Figure 5: TSP Software Quality Profile [6]

® Capability Maturity Model and CMMI are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.



The Software Quality Challenge

Step 6: Defect Analysis
Perhaps the most important single step in
any quality management and improvement
system concerns defect data. Every defect
found after development, whether by final
testing, the users, or any other means must
be carefully evaluated and the evaluation
results used to improve both the process
and the product. The reason that these
data are so important is that they concern
the process failings. Every defect found
after development represents a failure of
the development process, and each such
failure must be analyzed and the results
used to make two kinds of improvements.

The first improvement – and the one
that requires the most rapid turnaround
time – is determining where in the product
similar defects could have been made and
taking immediate action to find and fix all
of those defects. The second improvement
activity is to analyze these defects to deter-
mine how to prevent similar defects from
being injected in the future, and to devise a
means to more promptly find and fix all
such defects before final testing or release
to the user.

Step 7: Configuration Management
For any large-scale development effort,
configuration management (CM) is critical.
This CM process must cover the product
artifacts, the requirements, the design, and
the development process. It is also essen-
tial to measure and manage the quality of
the CM process itself. Since CM processes
are relatively standard, however, they need
not be discussed further.

Step 8: Process Improvement
The fundamental change required by this
software quality-management strategy is to
use the well-proven methods of statistical
process control to guide continuous
process improvement [7]. Here, however,
we are not talking about improving the tol-
erances of machines or the purity of mate-
rials; we are talking about managing the
quality levels of what people do, as well as
the quality levels of their work products.
While people will always make mistakes,
they tend to make the same mistakes over
and over. As a consequence, when devel-
opers have data on the defects they per-
sonally inject during their work and know
how to use these data, they and their team-
mates can learn how to find just about all
of the mistakes that they make. Then, in
defining and improving the quality-man-
agement process, every developer must use
these data to optimally utilize the full range
of available defect detection and preven-
tion methods.

Regardless of the quality management
methods used (i.e., International Organ-
ization for Standardization, correctness-by-
construction, or AS9100) continuous
improvement strategies such as those
defined by CMMI and TSP should be
applied to the improvement process itself.
This means that the process quality mea-
sures, the evaluation methods, and the deci-
sion thresholds must also be considered as
important aspects of continuous process
improvement. Furthermore, since every
developer, team, project, and organization
is different, it means that this continuous
improvement process must involve every
person on every development team and on
every project in the organization.

Conclusion
While we face a major challenge in improv-
ing software quality, we also have substan-
tial and growing quality needs. It should
now be clear to just about everyone in the
software business that the current testing-
based quality strategy has reached a dead
end. Software development groups have
struggled for years to get quality improve-
ments of 10 to 20 percent by trying differ-
ent testing strategies and methods, by
experimenting with improved testing tools,
and by working harder.

The quality improvements required are
vast, and such improvements cannot be
achieved by merely bulling ahead with the
test-based methods of the past. While the
methods described in this article have not
yet been fully proven for software, we now
have a growing body of evidence that they
will work – at least better than what we
have been doing. What is more, this quali-
ty strategy uses the kinds of data-based
methods that can guide long-term contin-
uous improvement. In addition to improv-
ing quality, this strategy has also been
shown to save time and money.

Finally, and most importantly, software
quality is an issue that should concern every-
one. Poor quality software now costs each of
us time and money. In the immediate future,
it is also likely to threaten our lives and liveli-
hoods. Every one of us, whether a develop-
er, a manager, or a user, must insist on qual-
ity work; it is the only way we will get the
kind of software we all need.u

Acknowledgements
My thanks to Bob Cannon, David
Carrington, Tim Chick, Taz Daughtrey,
Harry Levinson, Julia Mullaney, Bill
Nichols, Bill Peterson, Alan Willett, and
Carol Woody for reviewing this article and
offering their helpful suggestions. I also
much appreciate the constructive sugges-
tions of the CrossTalk editorial board.

References
1. Humphrey, W.S. PSP: A Self-Im-

provement Process for Software Engi-
neers. Reading, MA: Addison-Wesley,
2005.

2. Jones, C. Software Quality: Analysis
and Guidelines for Success. New York:
International Thompson Computer
Press, 1997.

3. Humphrey, W.S. Winning With Soft-
ware: An Executive Strategy. Reading,
MA: Addison-Wesley, 2002.

4. Humphrey, W.S. TSP: Leading a De-
velopment Team. Reading, MA:
Addison-Wesley, 2006.

5. Humphrey, W.S. TSP: Coaching Devel-
opment Teams Reading, MA: Addi-
son-Wesley, 2006.

6. Humphrey, W.S. “Three Dimensions of
Process Improvement, Part III: The
Team Process”CrossTalk Apr. 1998.

7. Florac, S., and A.D. Carleton. Measur-
ing the Software Process: Statistical
Process Control for Software Process
Improvement. Reading, MA: Addison
Wesley, 1999.

8. Davis, N., and J. Mullaney. “Team
Software Process in Practice.” SEI
Technical Report CMU/SEI-2003-TR
-014, Sept. 2003.

June 2008 www.stsc.hill.af.mil 9

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEI)
after his retirement from
IBM. He established the
SEI’s Process Program

and led development of the CMM for
Software, the PSP, and the TSP. He man-
aged IBM’s commercial software devel-
opment and was vice president of tech-
nical development. He is an SEI Fellow,
an Association of Computing Machin-
ery member, an Institute of Electrical
and Electronics Engineers Fellow, and a
past member of the Malcolm Baldrige
National Quality Award Board of
Examiners. In a recent White House cer-
emony, the President awarded him the
National Medal of Technology. He
holds graduate degrees in physics and
business administration.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-6379
Fax: (412) 268-5758
E-mail: watts@sei.cmu.edu


