
Service-Oriented Architectures

4 CROSSTALK The Journal of Defense Software Engineering September 2007

Web services in SOAs allow applica-
tions to interact and data to be

interchanged without direct human
intervention. The use by Web services of
eXtensible Markup Language (XML),
SOAP (formerly Simple Object Access
Protocol), and related open standards
enables these interchanges to be
achieved over connections that are
established dynamically on an ad-hoc
basis.

Web service-based SOAs are prolif-
erating exponentially, both in number
and extent, in Department of Defense
(DoD) and other government agencies,
the private sector, and academia. Web
services are relied on to create, manipu-
late, and protect information, including
the most sensitive private information.
They are used to perform high-conse-
quence and mission-critical information-
handling functions.

The individual, software-intensive
Web services of which these SOAs are
composed are also growing larger and
more complex, to the extent that their
own developers can no longer fully rec-
ognize – let alone comprehend – all of
their possible behavioral states, weak-
nesses, and vulnerabilities.

At the same time, software-level
threats to Web services and portals to
SOAs are increasing in intensity, sophis-
tication, and variety. Zero-day vulnera-
bilities in commercial Web service soft-
ware products have not only been
proven to exist, they are on the rise. (A
zero-day vulnerability is one against
which an exploit is launched by an
attacker before a security patch can be
issued by the product’s developer.)

The security challenges presented by
the Web service processing model, in
which SOAP messages encapsulating
sensitive XML documents are forwarded
along complex chains of consumer,

provider, and intermediary Web ser-
vices, are formidable. This is because
many of the features that make Web ser-
vices and SOAs attractive – greater
accessibility of data, dynamic establish-
ment of interservice relationships and
communication paths, a high degree of
service autonomy, and a minimal
amount of direct human involvement –
are all at odds with traditional security
models and controls.

The nature of Web services and
SOAs makes them subject to unique
attacks, as well as variations (often
involving intensification) of familiar
attacks that already target Web servers
and applications. Achieving secure Web
service processing entails the extension
and augmentation of existing Web and
Internet security mechanisms. This is
increasingly achieved through the imple-
mentation of authentication, authoriza-
tion, trust, confidentiality, integrity, and
availability of functions based on rela-
tively new and still-emerging Web ser-
vices security standards.

NIST SP 800-95, Guide to
Secure Web Services
To help the architects, developers, and
engineers involved in the creation of
Web services and SOAs understand and
address the security challenges that con-
front them, the NIST is publishing a
new SP 800-95, Guide to Secure Web
Services. The current draft of SP 800-95
can be downloaded from the SP page of
the NIST Computer Security Resource
Center Web site: <http://csrc.nist.gov/
publications/nistpubs/>. The final ver-
sion will be published at this address
later this year.

The objective of this NIST SP is to
describe and make sense of the broad
range of Web service (WS) security stan-

dards that have been produced by the
Organization for the Advancement of
Structured Information Standards,
World Wide Web Consortium, Web
Services Interoperability Organization
(WS-I), the Liberty Alliance, and other
standards bodies. Because of this objec-
tive, the SP tends to focus on security
issues that are already being addressed
by these various standards bodies and
omits discussion of those security chal-
lenges that have not yet been acknowl-
edged by the standards community, or
that the community has deemed unimpor-
tant, out of scope, or too hard to address via
Web services security standards.

While SP 800-95 does describe how
to implement security functions and
protections for Web services and SOA
portals, it does so almost exclusively
from the point of view of what can be
achieved using technologies based on
current and emerging Web services
security standards.

Unsurprisingly, after providing back-
ground information on key Web services
and SOA concepts, capabilities, and
components, including discovery, mes-
saging, portals, coordination (choreogra-
phy and orchestration), and the roles,
modes, and properties of Web services,
the SP’s discussion is limited to what is
already widely accepted as constituting
Web services security: secure interservice
messaging, protection of XML-based
content, secure negotiation of contracts
between service providers, and estab-
lishment of trust relationships between
services.

For each of the security capabilities
and protections it introduces, the SP
describes the associated Web services
security standards. These standards are
organized into a stack (comparable to
the Open Systems Interconnect [OSI]
and Transport Control Protocol/

The Security of Web Services as Software
Karen Mercedes Goertzel

Booz Allen Hamilton

To help creators of Web services and Service-Oriented Architectures (SOAs) understand and address the security challenges
that confront them, the National Institute of Standards and Technology (NIST) is getting ready to publish a new Special
Publication (SP) 800-95, Guide to Secure Web Services. This SP describes Web service security standards and explains how
to develop Web services and SOA portals using technologies based on those standards. However, neither SP 800-95 nor the
standards it describes address a critical challenge: the security of Web services as software. Without considering software secu-
rity, developers cannot create Web services that are truly trustworthy. This article describes both the content of SP 800-95 and
highlights its critical omissions in terms of measures needed to produce Web service software that is in and of itself secure.

The Security of Web Services as Software

Internet Protocol network protocol
stacks). Within an SOA, the standards
are also frequently implemented within
core security services, i.e., security ser-
vices that other services depend on to
perform essential functions on their
behalf. The SP also describes the securi-
ty threats to Web services that protec-
tions and functions based on these stan-
dards are intended to address. These
functions and protections fall into eight
general categories:
1. Authentication and identity man-

agement. The SP addresses service-
to-service authentication and service,
and identity management and
authentication of human users who
access SOAs via Web portals.
Specific standards discussed include
WS-Security for interservice authen-
tication (including its security short-
comings), and Security Assertion
Markup Language (SAML) as the
basis for single sign-on by human
users.

2. Interservice trust. The SP address-
es trust establishment (based on
authenticated identity) between ser-
vices, and federation of trust across
SOA boundaries.

3. Secure service discovery. The SP
focuses on security for Universal
Description, Discovery and Integra-
tion (UDDI) and Web Service
Description Language (WSDL) inter-
faces, secure access to the SOA reg-
istry, secure interaction of Web por-
tals with the SOA discovery services,
and application programmatic inter-
faces (APIs) for secure service
inquiry and publishing.

4. Distributed authorization and
access management. The SP dis-
cusses the authorization of privileges
to Web services and the enforcement
of least privilege in SOA authoriza-
tion models. Specific standards dis-
cussed include SAML as the basis for
asserting privileges, eXtensible
Access Control Markup Language
(XACML) as the basis for service-
level access control, and the use of
XML schema and security metadata
for data/content-level access control.

5. Confidentiality and integrity of
service-to-service interchanges.
The SP discusses use of HyperText
Transport Protocol Secure (HTTPS)
for transport layer security in SOAs,
WS-Security for SOAP message-level
security, XML encryption and signa-
ture for content protection, and the
role of XML gateways in providing
additional message-level and content-

level integrity protection.
6. Accountability. The SP discusses

methods for achieving accountability
end-to-end throughout a Web service
chain, including audit in SOA environ-
ments and use of XML signatures as
the basis for non-repudiation of Web
service transactions.

7. Availability and quality of service
(QoS). The SP discusses availability
and QoS techniques such as fail-over,
handling of service deadlocks and ser-
vice recursion, and it addresses the
security implications of competing
reliable messaging standards.

8. Security policy specification. The
SP discusses WS-Policy and its role in
supporting specification and enforce-
ment of security policy within an
SOA.
Recognizing that standards are only

the basis for implementations, the SP
touches on tools and technologies for

implementing security standards-based
Web services, such as Web service-orient-
ed developer toolkits, XML parsers, pro-
cedural languages commonly used in Web
service development, XML, and tools and
techniques for testing the security of Web
services.

In this context, the SP also addresses
issues associated with secure Web service
enabling of legacy applications (e.g., pub-
lic-key enabling consistent with Web ser-
vices standards and implementing stan-
dards-based security functions and protec-
tions for legacy applications and databases
exposed as Web services).

Security of Web Services as
Software
Though SP 800-95 does cover imple-
mentation of Web services that are like-
ly to be called secure because they are

based on accepted Web services security
standards, the SP does not discuss what
is probably the most important security
issue in the implementation of Web ser-
vices – an issue that is not addressed by
any Web services security standard: The
security of Web services as software.

It can be argued that because Web
services are subject to the same security
issues as all software, and particularly
network-based application software, no
discussion of the topic was needed in
NIST’s Web services security guidance.
Indeed, NIST excluded such a discus-
sion as out of scope exactly because the
need for software security is not unique
to Web services.

This is an interesting position for
NIST to take, given that one can argue
equally that requirements for confiden-
tiality, integrity, availability, authentica-
tion, trust, identity management, etc., are
not unique to Web services either.
Moreover, in several cases the standards
that are being used to address these
requirements were never intended to be
exclusive to Web services. For example,
XML digital signature and encryption
are intended for use with all XML docu-
ments, not just those exchanged
between Web services. SAML and
XACML, while certainly used to imple-
ment authentication and access control
in Web service implementations, are
intended to be widely applicable to all
types of applications.

Threats to Web Service Software
What Web service software does share
with other software is its exposure to
threats throughout its lifetime, not just
after it has been deployed, but also while
it is under development. Threats to soft-
ware in development may be intentional,
coming from malicious developers who
subvert or sabotage the software they or
their colleagues build, or they may be
unintentional, introduced by developers
who, due to ignorance, carelessness, or
pressure to get the software out on time
fail to implement checks and controls
that would eliminate or minimize expo-
sure of the software’s numerous weak-
nesses and vulnerabilities.

Compounding this problem is the
almost universal use of commercial and
open source software components in the
building of Web services. The pedigree
of such components is often a mystery.
Neither the processes used to develop
those components, nor the security
properties, weaknesses, and vulnerabili-
ties of the components themselves are
ever investigated by the developers who

September 2007 www.stsc.hill.af.mil 5

“What Web service
software does share

with other software is
its exposure to threats
throughout its lifetime,

not just after it has
been deployed, but
while it is still under

development.”

Service-Oriented Architectures

6 CROSSTALK The Journal of Defense Software Engineering September 2007

incorporate those components into their
Web services. Even pedigree of open
source components is taken entirely on
faith. Just because open source code is
available for review does not mean that
anyone actually does code reviews of
open source code.

Specific threats to Web services
under development fall into two general
categories: 1) malicious code, and 2)
exploitation of weaknesses and vulnera-
bilities.
1. Malicious code. Logic bombs, time

bombs, Trojan horses, worms, and
other undocumented malicious func-
tions are intentionally inserted into
the source code or appended to the
binary executable by the developer.
Failure to review source code and
carefully observe the behavior of
executing binary code means that
such embedded malicious code will
be allowed to remain in software
when it is deployed. Furthermore,
malicious code may be added by an
attacker who intercepts and tampers
with electronically distributed exe-
cutables. After the software is
deployed, it is subject to the delivery
of new malicious code or the execu-
tion of embedded malicious code.
The risk of malicious code insertions
and executions is increased when the
software and its environment are not
configured insecurely, and anti-mali-
cious code countermeasures are not
deployed or used effectively.

2. Exploitable weaknesses and vul-
nerabilities. Flaws, defects, errors,
and faults are often included, usually
unintentionally but sometimes inten-
tionally, in the artifacts – specification,
architecture, design, or implementa-
tion – of the Web service. In some
cases, these can be intentionally lever-
aged by attackers (or by malicious soft-
ware processes acting on an attacker’s
behalf) to compromise the security of
the Web service itself or of the data it
handles.
Weaknesses originate as early as the

requirements phase. Security-related
requirements may be overlooked or
misstated, or spurious requirements
may be included. They may arise as the
result of poor architecture or design
choices, such as failure to enforce least
privilege or to design in redundancy of
critical processes.

Vulnerabilities may enter software
during its implementation, due to use
of non-secure implementation prac-
tices. Examples of such practices
include: accepting user input without

first validating it; using vulnerable
technologies (e.g., SOAP over unen-
crypted, unauthenticated HTTP con-
nections); use of non-secure pro-
gramming languages (e.g., non-type-
safe languages used without input
validation) and library functions (e.g.,
buffer overflow-prone C functions
such as printf); use of non-secure
development tools (e.g., compilers
that do not perform bounds check-
ing); reuse of vulnerable compo-
nents (e.g., commercial software that
has known vulnerabilities); use of
development tools (e.g., compilers
that do not perform bounds check-
ing); or reuse of vulnerable compo-
nents (e.g., commercial software that
has known vulnerabilities).

Weaknesses and vulnerabilities may
be allowed to remain in software due
to the failure to perform adequate
security reviews, assessments, and
tests of the artifacts of the develop-
ment process (from specifications
through the software itself); or the
intentional tampering with the results
of such reviews/assessments/tests.

They may also be allowed to remain
in the form of back doors and trap-
doors that are not removed prior to
software distribution. They may arise
or fail to be mitigated due to specifi-
cation of non-secure configuration
parameters for the software and its
environment (or the use of non-
secure installation procedures,
scripts, and tools).
Once the Web service is operational,

it is subjected to misuse by its intended
users, and abuse by attackers.
Understanding the attack patterns to
which Web services are likely to be sub-
ject can be extremely helpful to the
developer in specifying security require-
ments, architectural characteristics, and
design properties that can reduce a ser-
vice’s exposure and vulnerability to like-
ly attack patterns. Moreover, such under-
standing provides a basis for defining
the code assessment criteria and security
test plans for developmental and non-
developmental Web service software
components (i.e., attack surface defini-
tions highlight specific targeted security
flaws to look for during code reviews;
misuse and abuse cases can be elaborat-
ed into white-box and black-box test
scenarios).

Exploits Against Web Services
The exploits, or attacks, that target exist-
ing Web services fall into two main cate-
gories: direct and indirect. Direct attacks

exploit known or suspected vulnerabili-
ties and weaknesses in the Web service
itself, while indirect attacks may target
the service's interface with the environ-
ment and middleware components on
which it relies, or its interface with the
external services and applications with
which it interacts.

Attacks against Web services have
one of three general objectives:
1. Disclosure. This may be achieved

through reconnaissance attacks that
discover or reveal Web service vul-
nerabilities that can be exploited by
other attack patterns. It may also be
accomplished through attacks that
bypass or cause denial of service in
the Web service so as to directly
access and disclose the sensitive/pri-
vate data handled by that service.

2. Subversion. This includes subver-
sion of the service’s functionality
(i.e., by direct tampering, malicious
code insertion/delivery, command
injection, tampering with the state of
the service’s execution environment,
and intentional triggering of errors
or faults at the service boundary with
its environment), of its data, or of its
security assumptions about other
services (i.e., by an attacker or mali-
cious process masquerading as an
entity or hijacking an entity that is
trusted by the service, and thereby
escalating its own privileges to match
those of the trusted entity). It also
includes attacks that bypass or cause
denial of service in the service in
order to directly access or tamper
with the data the service handles.

3. Sabotage. This may be achieved
through denial-of-service attacks on
the service itself, or on the external
entities on which it depends for its
dependable, secure operation (e.g.,
execution environment and network
components, core security services,
and defense-in-depth protections).
An objective of sabotage is often to
bring down or bypass the targeted
software in order to directly access
the data in control.

Particular Security Challenges for
Web Services in SOAs
Some security challenges are unique to
Web service software, and others are
greatly exacerbated when they arise in
Web service software. The chains of
dependencies between autonomous,
dynamically invoked Web services with-
in SOAs are often much more complex
than when autonomous software com-
ponents are used in more traditionally

The Security of Web Services as Software

distributed processing models. In most
distributed systems, the list of compo-
nents that will be invoked, and the order
in which they will be invoked, in the
course of completing a particular trans-
action or task is predefined, as to a great
extent are the outputs of the invoked
components. In an SOA in which ser-
vices are dynamically coordinated
(through choreography or orchestra-
tion), it is frequently impossible to pre-
dict in advance which services will be
invoked by other services, and in what
order those invocations will take place.
In dynamic coordinations that cross the
boundaries from one trust domain to
invoke services in another trust domain,
it is especially hard to establish valid
security assumptions in advance about
the behaviors, policies, and permissions
expected by the services in the remote
domain. If a fault in a Web service caus-
es that service to violate expected
behavior or policy, the results of such a
violation have the potential to propagate
throughout the entire chain of services.
Because that chain is unpredictable
(being dynamically established rather
than pre-defined), the propagation and
impact of the violation will also be
unpredictable. The result of a fault in
one Web service, then, may compromise
the security and dependability of other
Web services much further along the
chain, which may make forensic analysis
to identify the true source of the com-
promise and to trace all the possible
branches of its progress extremely diffi-
cult (if not impossible).

Moreover, in SOA implementations,
each service is inherently dependent on
other autonomous services. The increas-
ingly widespread use of what are termed
core security services model means that
many innately non-secure Web services
depend on other services for critical
security protections and capabilities.
Their role as security service providers
means that these core services are not
only the most critical services in the
SOA, but represent the highest-value
targets to attackers.

Even when provided via core securi-
ty services, the SOA’s security functions
and protections are often actually imple-
mented using the security functions and
protections provided by the underlying
application framework, e.g., Java Enter-
prise Edition or .NET. This increases
the risk that consumer Web services not
based on the same framework technolo-
gies may not interoperate seamlessly
with the core security services. The cen-
tralization of the SOA’s security func-

tions into a set of core services increas-
es the imperative to ensure that such ser-
vices, which will be trusted to guarantee
the entire SOA’s security posture, will be
able to resist or tolerate attacks and to
continue operating reliably under hostile
conditions. If such software contains
weaknesses and vulnerabilities that can
be exploited by attackers, this model col-
lapses due to the misplacement of trust
in components that are too vulnerable to
perform their designated tasks.

A number of other factors unique to
Web services and SOAs make their soft-
ware components more vulnerable to
software-level exploits than other types
of application software. First and fore-
most among these are the following:
1. The woefully inaccurate assumption

that Web service interfaces will be
used only as intended by other Web
services, and not by human beings or

malicious processes. Because Web
services generally have no direct
human interfaces, their operation
receives little if any human scrutiny
or intervention ... except by attackers.

2. The unavoidable fact that by expos-
ing Web services applications and
databases that were never originally
intended for direct public access, the
weaknesses and vulnerabilities of
those applications and databases are
also exposed to public view.
Moreover, the easy-to-use develop-
ment tools used by many Web ser-

vices developers obscure the services’
low-level functionality from the
developer; it is these low-level func-
tions that often contain the
exploitable weaknesses and vulnera-
bilities that are targeted by attackers
and malicious code. For example,
Apache Axis 2 enables a Java devel-
oper to simply load his/her Java
objects into the Axis SOAP engine.
At runtime, it is the SOAP engine
that determines which incoming
SOAP request messages should be
routed to which Java objects. The
SOAP engine then translates those
requests into standard Java function
calls and routes them appropriately.
Unless he/she has expressly reviewed
the source code of the Axis SOAP
engine, he/she will have no idea
whether its routing or translation
functions contain embedded mali-
cious logic that could result in incor-
rect routing of messages or incor-
rectly generated Java calls. In the case
of a commercial tool, such as Visual
Studio, the ability to review the tool’s
source code is not even an option.
Automatic discovery of Web services

in particular is a feature of SOAs that
makes it easier for attackers to locate and
access potential targets. Publishing of
repository entries about services through
standard discovery interfaces (WSDL and
UDDI) represents an unprecedented level
of public disclosure of service processing
details – details that can be used by recon-
naissance attackers to craft much more
effective attacks on the discovered ser-
vices. Moreover, to accomplish automatic
service discovery, privileges must be
granted to unknown entities outside the
organization that owns the services being
discovered. There is a significant question
as to the extent that entities outside the
SOA, which interact with services discov-
ered inside the SOA, can be governed by
the policies (including security policies)
enforced for that SOA.

For example, Organization #1, which
operates SOA #1, may mandate that all
Web service software must undergo code
review and penetration testing before
being deployed. Organization #2, which
operates SOA #2, may have no such poli-
cy. So, if SOA #1 establishes a federated
trust relationship with SOA #2, there is
no way for Organization #1 to know
whether the Web services in SOA #2 con-
tain exploitable faults or malicious logic.
Trust, as it is defined for Web services,
(e.g., WS-Trust) refers solely to the assur-
ance that a given service’s identity has
been authenticated by a trusted third

September 2007 www.stsc.hill.af.mil 7

“Understanding the
attack patterns to

which Web services are
likely to be subject can
be extremely helpful to

the developer in
specifying security

requirements,
architectural

characteristics, and
design properties that
can reduce a service’s

exposure ... ”

Service-Oriented Architectures

8 CROSSTALK The Journal of Defense Software Engineering September 2007

party. By this definition, trust has nothing
to do with the authenticated service’s
trustworthiness. The non-malicious func-
tioning and behavior of the service must
be taken entirely on faith.

Finally, all of the security problems
associated with component-based soft-
ware systems are also present in service
choreographies and orchestrations, and
furthermore, exacerbated by the increas-
ingly dynamic nature of service compos-
ability. While security assumptions about
individual services may be derived from
the services’ WSDL descriptions, and
when services are combined in ways that
differ from transaction to transaction, it
is virtually impossible to establish (1)
whether the security assumptions about a
given service are still valid and meaning-
ful when that service is instantiated with-
in a given choreography/orchestration,
and (2) whether there are any irresolvable
security conflicts between services that
are dynamically composed into a chore-
ography or orchestration.

It is true that some features of Web
service technology actually help miti-
gate security issues found in other types
of software. Most notably, the reliance
of Web services on platform-indepen-
dent, standards-based APIs such as
WSDL and SOAP, rather than using
proprietary and/or platform-specific
APIs, makes it easier to replace vulnera-
ble Web services quickly with less vul-
nerable substitutes. Use of standard
APIs also enables diversity of service
implementations – a secure design prin-
ciple that, when coupled with redundan-
cy of services, reduces risk by reducing
the number of services that will be
compromised by an attack pattern tai-
lored to exploit a specific vulnerability
in a particular Web service implementa-
tion (or product). The result is an
improvement in availability because the
alternate services are unlikely to be sus-
ceptible to the same implementation-
specific attack patterns that compro-
mised the services they back up.

Building Secure Web Service
Software
What can be done to make Web service
software trustworthy? In practical terms,
trustworthiness will be achieved by pro-
ducing a Web service that is dependable,
not only under both expected operating
conditions but also under unexpected and
intentionally hostile operating conditions.
It is this dependability under unexpected
hostile conditions that constitutes soft-
ware security.

In practical terms, intentionally hostile
operating conditions are created either by
the presence of attack patterns or the
behaviors that result from execution of
malicious code. To continue operating
dependably, then, a Web service must be
designed and implemented so that it is
able to do the following:
• Recognize and resist or block most

attack patterns and malicious behaviors.
• Tolerate and safely handle the errors

and failures that result from those
attacks and malicious behaviors it can-
not resist or block.

• Exhibit resilience by isolating and con-
straining the damage and recovering
quickly (to an acceptable level of capa-
bility) from successful attacks and
malicious behaviors.

Furthermore, to be deemed trustwor-
thy, Web service software must not only
exhibit the properties that constitute
dependability and security, but also those
that constitute assurability, which is the
ability to independently verify the soft-
ware’s other required properties. The
properties that constitute software
dependability are correctness and pre-
dictable execution (i.e., the software does
what it is supposed to do and nothing
else), and in some cases safety. (Software
safety is defined in the National Aeronau-
tics and Space Administration Software
Assurance Glossary <http://sw-assuran
ce.gsfc.nasa.gov/help/glossary.php> as
the systematic identification, analysis,
tracking, mitigation, and control of soft-
ware hazards and hazardous functions,
hazards being existing or potential condi-
tions or functions that can contribute to
or result in mishaps or accidents. Software
safety does not concern itself with pre-
venting intentionally induced incidents,
even though such an incident could result
in a mishap or accident.)

The properties that constitute soft-

ware security are integrity (inability to sub-
vert) and availability (inability to sabotage),
and for Web services, accountability of the
service as a non-human actor in a SOA
(which includes non-repudiation by the ser-
vice of its actions). In many cases, confi-
dentiality of the software itself is also a
desirable security property: The software’s
executable and/or operational behaviors
may be hidden and/or obfuscated to make
reconnaissance and disclosure of vulnera-
bilities difficult.

The properties that promote assurabil-
ity include the following: simplicity (of
design and implementation), smallness (of
code), and traceability (of implementation
to requirements).

In practical terms, a Web service can
be said to be secure when it achieves the
following:
1. The behavior of the service itself

(including its behavioral state changes
in response to inputs and external
events) does not make the service vul-
nerable to attack or malicious code
insertion/execution. This means the
service must handle all inputs safely,
validating them before use and reject-
ing or modifying (to make acceptable)
those that threaten its secure behavior.
It also means that the service must
handle errors, exceptions, faults, and
failures safely and securely, so that
these events do not cause the software
to enter an insecure state or compro-
mise the data and resources to which it
has access.

2. The service’s interactions and inter-
faces must be secure. This includes
those used among the service soft-
ware’s constituent components, e.g.,
remote procedure calls, and those used
between the service and any external
entities, including other Web services
(e.g., SOAP over HTTPS with WS-
Security), environment-level compo-
nents (i.e., APIs, call-level interfaces),
and human users (i.e., user interfaces).

3. The service is executable and data files
in the file system must be protected
from unauthorized access. This means
that the configuration parameters of
the service itself and of its execution
environment protections must be as
restrictive as possible.

4. The service’s attack surface must be
minimized. If this has not been
achieved by reducing the number of
vulnerabilities in the service itself
(both at the architectural and software
levels), it might be achievable through
defense-in-depth measures that mini-
mize the exposure of the vulnerabili-
ties that were not eliminated.

“ ... intentionally hostile
operating conditions are

created either by the
presence of attack

patterns or the
behaviors that result

from execution of
malicious code.”

The Security of Web Services as Software

September 2007 www.stsc.hill.af.mil 9

About the Author

Karen Mercedes
Goertzel is a software
security subject-matter
expert supporting the
Director of the DHS
Software Assurance

Program and has provided similar sup-
port to the DoD’s Software Assurance
Tiger Team. From 2002-2004 she was
project manager of the DISA
Application Security Support Task and is
currently leading the team developing
NIST Special Publication 800-95, Guide
to Secure Web Services. In addition to soft-
ware assurance and application security,
Goertzel has extensive expertise and
experience in trusted systems and cross-
domain information sharing solutions
and architectures, information assurance
(IA) and cybersecurity architecture, strat-
egy and planning, risk management, and
mission assurance. She has written and
spoken extensively on software security
and IA topics, both in the U.S. and
abroad.

Booz Allen Hamilton
8283 Greensboro DR H5061
McLean,VA 22102
Phone: (703) 902-6981
Fax: (703) 902-3537
E-mail: goertzel_karen@bah.com

COMING EVENTS

October 2-4
STPCON 2007 Software Test and

Performance Conference
Boston, MA

www.stpcon.com

October 16-17
ICSQ ’07International Conference on

Software Quality
Denver-Lakewood, CO

www.ndia.org

October 22-25
10th Annual Systems

Engineering Conference
San Diego, CA
www.ndia.org

October 22-26

STARWEST 2007
Software Testing Analysis and Review

Anaheim, CA
www.sqe.com/StarWest/

October 29-30
VERIFY 2007

Crystal City, VA
http://verifyconference.com

November 4-7
AYE 2007

Amplifying Your Effectiveness
Phoenix, AZ

www.ayeconference.com

May 2008

Systems and Software
Technology Conference
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Conclusion
While NIST’s new SP 800-95, Guide to
Secure Web Services, should prove helpful in
increasing Web service implementers’
knowledge and understanding of the
security standards being adopted to secure
service-to-service interactions within dis-
tributed SOA-based information systems,
the SP does not discuss methods and
techniques for design and implementation
of secure Web service software. This leaves
it up to the Web service developer to find
that type of information elsewhere.

A good place for developers to start
looking is the Department of Homeland
Security’s (DHS’) BuildSecurityIn Web
portal at <https://buildsecurityin.us-cert.
gov/>. The resources here provide a
broad range of recommendations on how
Web service developers can add security
principles and practices to their existing
software processes so that the software
produced by those processes will not only
perform its required security functions,
but will exhibit the levels of attack-resis-
tance, attack-tolerance, and attack-
resilience required to minimize its attack
surface and susceptibility to malicious
code penetrations and executions.

Recently, the Defense Information
Systems Agency (DISA) published a
Security Technical Implementation Guide
entitled Application Security and Devel-
opment Security. This can be downloaded
at <http://iase.disa.mil/stigs/stig/asd
-stig.pdf>.u

Project Tracking
April 2008

mission Deadline: November 16, 2007

Software Safety
May 2008

bmission Deadline: December 6, 2007

Information Assurance
June 2008

ubmission Deadline: January 18, 2008

Ple ssTalk, available on the Internet at
<www.stsc.hill. ssions on all software-related topics at any time,

along with Letters to the Editor and BackTalk. Also, we now provide a link to each monthly theme, giving
greater detail on the types of articles we're looking for <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

ent upcoming theme issues. Below is the submittal schedule
s we are looking for:

