
Traditional systems development life-
cycles (SDLCs) used to develop

information systems generally exclude
security activities. Without explicitly
defining security activities during sys-
tems development, security may not be
completely planned for or even consid-
ered. Integrating security activities into
the SDLC helps address this issue.
Security activities can be included in
phases such as requirements, design,
build, or test to ensure that governance
or industry best practices are satisfied,
and that the goal of the system is
achieved without conflict.

The Benefits of Integrating
Security Into the SDLC
Bolting on security post-development is
no longer sufficient in delivering sys-
tems on time, under budget, and with
the proper level of protection in place.
Addressing the issue, the Computer
Emergency Readiness Team Coordina-
tion Center (CERT/CC) states the fol-
lowing:

… many security incidents are
the result of exploits against
defects in the design or code of
software. The approach most
commonly employed to address
such defects is to attempt to
retroactively bolt on devices that
make it more difficult for those
defects to be exploited. This is
not a solution that gets to the
root cause of the problem and
threat. [2]

It is estimated that bolting-on securi-
ty post-development costs roughly three
times more than the cost of built-in
security. According to Gartner, if 50
percent of vulnerabilities were removed
before production of purchased and
internally developed software, enter-
prise configuration management (CM)
costs and incident-response costs could

be reduced by 75 percent each [3].
Building in security ensures proper

and cost-effective protection. Assets
that are identified and categorized can
be more appropriately protected in
terms of adequacy and cost. For exam-
ple, when risk analysis is performed dur-
ing the requirements phase, security
risks may be identified which translate
into security requirements.

Approaches for Integrating
Security Into the SDLC
Regardless of the SDLC model used (e.g.
waterfall, spiral, Rational Unified Process),
the SDLC represents a phased approach
to the development of a system. An
appropriate model should facilitate the re-
analysis and validation of the plans,
requirements, and design at multiple
points throughout its life cycle. Whether
regarded as a phase or discipline, an SDLC
is composed of several common group-
ings of activities: requirements, design and
build, test and deploy, operations and
maintenance, and disposal, with full life-
cycle support activities such as risk man-
agement, CM, and training. Security can
be integrated into these different points of
the SDLC independent of the model.

Figure 1 describes each phase or disci-
pline of an SDLC with the associated
security activities.

Full Life-Cycle Support Activities
Risk Management
Risk management includes performing
security risk analyses at different points of
the life cycle. Security risk analysis serves to
identify and mitigate security-related risks.

The results of the risk analysis feed
into the risk management process of iden-
tifying, controlling, and eliminating or
minimizing uncertain events that may
affect the system. Risk analysis should be
repeated iteratively throughout the sys-
tem’s life cycle as different activities allow
opportunities to identify new or changing
risks. For instance, as the project progress-

es forward and activities shift from
requirements development to high-level
system design, additional information will
be uncovered about the application. This
new information may reveal risks not pre-
viously identified such as use of vulnera-
ble components or a flawed authentica-
tion model. We also know that changes to
design during the build phase are almost
always certain to occur. That is why it is
important to also perform a risk analysis
on the system after it has been built.

CM
Inaccurate or incomplete CM may enable
malicious developers to exploit the short-
comings in the CM process in order to
make unauthorized or undocumented
changes to the software. Lack of proper
software change control, for example,
could allow rogue developers to insert or
substitute malicious code, introduce
exploitable vulnerabilities, or remove or
modify security controls implemented in
the software. Good CM practices also pre-
vent the introduction of unintentional
flaws into software code. For example, a
developer makes a seemingly harmless
modification to the application’s interface
before deployment and is able to bypass
the CM process. This change unintention-
ally gives normal, restricted users elevated
privileges to view information they nor-
mally would not be allowed to access. Since
the CM process was bypassed, this change
was not analyzed or tested for its security
impact as it normally should have been.

By tracking and controlling all of the
artifacts of the system development
process, CM helps ensure that changes
made to those artifacts cannot compro-
mise the trustworthiness of the software
as it evolves through each phase of the
process. Coming from a systems develop-
ment background, I have had the oppor-
tunity to practice CM hands on. Now that
I am involved in security, I have found that
good CM is no different than CM for
security. Thus, practicing good CM is
good security.

Baking in Security During the
Systems Development Life Cycle

Vulnerabilities in software that are introduced by mistake or poor practices pose a serious threat. Combating threats in today’s
electronic environment requires a methodical approach in building security into software from the ground up, or baking in
security as some of us refer to it. The absence of a planned approach opens the possibility for application flaws which adver-
saries could potentially exploit. Exploiting application flaws is a likely scenario, considering a Gartner report that states that
75 percent of successful attacks are targeted towards vulnerabilities at the application layer [1].

Kwok H. Cheng
Booz Allen Hamilton

22 CROSSTALK The Journal of Defense Software Engineering March 2007

Baking in Security During the Systems Development Life Cycle

Requirements
During requirements, a risk analysis of
the initial functional requirements
should be conducted. This initial analy-
sis should form an important source of
security requirements for the system and
is the best way to start if the project
team is having difficulty identifying ini-
tial security requirements. This helps
address the familiar question where do I
start?

Performing threat modeling and mis-
use/abuse cases are also important
sources for developing appropriate secu-
rity requirements as well as secure
design. Threat modeling attempts to
identify potential threats to the software,
estimating the risk vulnerabilities may be
exploited by these threats, and then
defining countermeasures to mitigate
the risks to the application. The devel-
opment of misuse/abuse cases helps
articulate scenarios in which security
requirements can be derived. For exam-
ple, a security requirement for validating
user input could be developed to address
a misuse/abuse scenario in which a user
enters malicious scripting in the applica-
tion’s input field. Other sources for
security requirements could be from
policy, laws, regulations, standards, or
best practices documents such as the
following:
• Federal Information Security Man-

agement Act [4].
• Defense Information Systems

Agency Security Technical Imple-
mentation Guides [5].

• National Institute of Standards and
Technology (NIST) 800 series
Special Publications [6].

• Comprehensive Lightweight Appli-
cation Security Process [7].

• The Open Web Application Security
Project (OWASP) best practices [8].
Additional security requirements dis-

covered during the design, build, and
test phases should be incorporated back
into the system’s requirements specifica-

tion. Security flaws and defects found
during testing should be analyzed to
determine whether they originated with
the system’s requirements, design, or
implementation and the root cause
should be corrected in order to remove
or mitigate the risk associated with that
vulnerability. Tracing the origin of secu-
rity defects is a form of measurement
analysis that will help the organization
identify where processes or products can
be improved. This can tie into an orga-
nization’s overall process improvement
effort (e.g., Capability Maturity Model®

Integration, International Organization
for Standardization 9001, Six Sigma).

Risk analysis can also help prioritize
security requirements to focus resources
on those components or functions that
introduce the greatest vulnerabilities to
the system. Specifically, security require-
ments that help mitigate the most critical
risks identified from the risk assessment
should be given priority over other
requirements. In addition, it aids in strik-
ing a balance between security and func-
tionality of the system.

Security requirements should not be
treated separately from functional sys-
tem requirements. Rather, the scope of
the requirements development phase
should be expanded to include security

considerations. Ideally, both security and
non-security requirements should exist
in a solidified system requirements spec-
ification.

Design and Build
Integrating security into the selection or
development of the architecture can be
seamlessly achieved. When evaluating
architectures for use, consider the secu-
rity aspects of the candidate models or
components, such as the following:
• Existing known vulnerabilities.
• Integration with other security prod-

ucts, such as an enterprise-level
authentication product.

• Resiliency against certain attacks
(e.g., cross-site scripting, structured
query language [SQL] injection).1

• Ability to meet security require-
ments.
For example, when selecting com-

mercial off-the-shelf products for inte-
gration, a search in the National
Vulnerability Database (NVD) can
determine if any known vulnerabilities
exist for that particular product.

Comparing the access control mech-
anisms in Java frameworks such as Struts
or Spring might be an example of a secu-
rity consideration during architecture
selection. Assessing how each frame-
work handles security helps in develop-
ing the correct architecture – something
that is often overlooked.

A secure architecture incorporates
overlaps of security controls among
components as well as built-in fall backs
if the security controls of any one com-
ponent are compromised. This is com-
monly referred to as defense-in-depth. For
example, I typically advise customers to
implement three layers of defense
against SQL injection attacks. First,
client-side input restrictions should be
implemented for the purposes of
thwarting casual attacks and providing
faster response times in generating error
messages. Then, input validation should
be built into the application as a sec-

March 2007 www.stsc.hill.af.mil 23

“Risk analysis should
be repeated iteratively

throughout the
system’s life cycle

as different activities
allow opportunities
to identify new or
changing risks.”

Requirements

• Security Risk Analysis

• Threat Modeling

• Security Requirements

Design and Build Test and Deploy

• Static Analysis of Source Code

• Security Testing

Operations and Maintenance

• Risk Analysis

• Vulnerability and Patch Management

Disposal

• Media Sanitization

Full Lifecycle

• Risk Management

• Configuration Management

• Secure Architecture and Design

• Security Minded Component Selection

• Vulnerability Analysis of Design

• Secure Coding

Figure 1: Phases of an SDLC

Software Security

ondary line of defense. If the applica-
tion receives repeated suspicious input
at this point, it may be reasonable to
assume that an attack is being attempt-
ed. Third, database calls should be con-
structed using parameterized queries to
eliminate the possibility of SQL injec-
tion and to aid in the manageability of
queries. In this architecture, there are
fall backs in case a line of defense is
compromised. Although all mechanisms
provide an additional layer of defense,
they also clearly have their own advan-
tages in providing other features such as
performance, incident detection, and
manageability. Secure architecture of
the application should also include
countermeasures to compensate for
vulnerabilities or inadequate assurance
levels in its individual components and
inter-component interfaces.

Designing for security involves both
proactive detection and prevention of
attacks, along with minimizing the
impacts of successful attacks.
Mechanisms such as fail-safe design,
self-testing, exception handling, warn-
ings to administrators or users, and self-
reconfigurations should be designed
into the application itself, while addi-
tional prevention, monitoring, and
response mechanisms (e.g., application
firewalls, intrusion detection systems,
and security kernels) should be incorpo-
rated as defense-in-depth measures in
the application’s execution environ-
ment. The idea is that security mecha-
nisms should be embedded into the
application itself in addition to the tra-
ditional prevention, monitoring, and
response mechanisms that are imple-
mented around the perimeter of the
application.

A fail-safe design, sometimes
referred to as fail-secure, is a design that
allows the application, in the event of
an unrecoverable error, to fail without
causing the application to be insecure.
An example might be an application
defaulting to no-access when a failed
connection does not allow it to validate
user permissions. At the source-code
level, implementation of fail-safe may
include having a default case in condi-
tional code to protect the application in
a situation where the other conditions
are somehow not met. Self-testing is
when the application can verify that its
own security functionality is working
properly. Robust exception handling is
critical to security. It helps identify the
source of problems and can be used for
investigative purposes. Relying solely on
exception handling by the Web server is

not recommended, as it cannot capture
specific actions taken on the applica-
tion.

Designing for security involves the
following key practices:
• Envision potential targets for

attacks. What component of the sys-
tem is most likely to be attacked?

• Analyze attacks from both external
and internal sources; do not forget
about malicious users inside the net-
work.

• Design and include proven authenti-
cation methods, access policies,
cryptographic algorithms, or other
forms of security controls where
appropriate.
Integration of security into the cod-

ing phase is relatively straightforward.
For custom coding, developers should
implement secure coding practices. For
example, developers should ensure that
user input is validated so that it only

contains data that is expected, i.e., no
malicious scripting or malformed input.
Code should be thread-safe, so that dur-
ing simultaneous execution by multiple
threads, the code functions correctly
and does not inadvertently access the
data of other threads. Errors should be
properly handled and debugging error
messages should not be displayed to the
user.

Security in implementation of pur-
chased or acquired components focuses
on implementing countermeasures and
constraints to deal with known vulnera-
bilities in the individual components
and their interfaces.

For custom-developed applications,
coding standards are usually defined as
part of the overall project effort. The
project’s coding standards should be
augmented with extra standards for
secure coding. For example, Sun has a
set of security coding guidelines avail-
able [9] which would be effortless to
integrate into the project’s coding stan-
dards document. It cannot get much
easier than this.

Providing a set of secure coding
standards does not guarantee those
practices will always be implemented.
Therefore, validation of the source
code is an essential activity. Much like
peer review of source code, a security
code review should be performed to
assess the correctness and adequacy of
the source code, but from a security
standpoint. This technique is also
referred to as white-box testing. The crite-
ria selected to evaluate the source code
should mirror the secure coding stan-
dards defined, or an agreed upon set of
criteria based upon the level of risk an
organization is willing to accept. Code
analysis discovers subtle and elusive
implementation errors before they reach
testing or fielded system status. By cor-
recting subtle errors in the code early,
software development organizations
can save engineering costs in testing and
long-term maintenance [10]. Analysis
can be performed manually or with
automated tools. The Software
Assurance Metrics And Tool Evaluation
project at NIST attempts to classify
software assurance tools and provides a
comprehensive listing of code analysis
tools [11].

Test and Deploy
Software security testing is not the same
as traditional functional testing. The
main objectives of software security
testing are to identify vulnerabilities in
the software and to ensure the secure
behavior of software in the face of an
attack.

Several techniques can be used for
security testing, such as a vulnerability
scan, penetration test, and security-ori-
ented fault injection2. Vulnerability
scans are performed with tools that
attempt to detect application-level vul-
nerabilities (e.g., SQL injection, cross-
site scripting) based on known attack
patterns. Penetration testing attempts to
break the application from the outside
(the hacker’s perspective). This can be
accomplished manually by security spe-
cialists or in an automated fashion with
tools such as brute-force attack tools.

What if a security code review has
already been performed? Is it necessary to
perform security testing since it is just
another form of validation? Both valida-
tion techniques have their benefits and
drawbacks. Security testing may simulate
real-world attacks and exploitable vulnera-
bilities. Security testing may also be per-
formed in conjunction with functional
testing (assuming the capability is present).
However, once vulnerabilities are found

24 CROSSTALK The Journal of Defense Software Engineering March 2007

“Providing a set of
secure coding

standards does not
guarantee those

practices will always
be implemented.”

Baking in Security During the Systems Development Life Cycle

during testing, there is often limited time
available to correct the problem. An ideal
validation approach would be to comple-
ment source code analysis (performed
during build) with security testing. With
this approach, a minimal number of secu-
rity flaws can be expected to come out of
testing, which allows adequate time to cor-
rect them. Of course, a more pragmatic
approach would be dependent on the
amount of assurance required from the
system and a definition of the overall
security goal. An organization may choose
to perform risk-based security code analy-
sis or testing, assessing limited portions of
the application based on risk.

Findings from security testing should
also be fed back through the change con-
trol process as would non-security find-
ings during functional testing.

Operations and Maintenance
Before the application goes into produc-
tion, a security risk analysis should be per-
formed to ensure that the application
(new or updated) does not introduce an
unacceptable level of risk. Results of
security testing should be fed into the risk
analysis, given there are viable threats to
the vulnerabilities identified during testing.

Periodic risk assessments should be
performed as the threat environment con-
stantly changes. New attacks can uncover
previously unseen vulnerabilities. It is also
important to conduct risk analysis when-
ever major changes to the system occur. In
the federal government, findings are fed
into a plan of actions and milestones,
where the mitigation is tracked to closure
[12].

Major changes also require validation –
a security code review and test. A good
approach is to perform security code
reviews and then attempt to exploit the
more severe findings. This gives organiza-
tions a feel for the reality of their findings.

From an operational standpoint, it is
important to constantly monitor security
alerts and advisories that pertain to the
technology implemented by the software
since it is not uncommon for systems to
fall victim to zero-day attacks3. A time-sav-
ing approach could be to subscribe to
security alerts or feeds from product ven-
dors or cyber-security sites such as the U.S.
CERT or the NVD. This eliminates the
need and dependency for administrators
to constantly check Web sites for security
updates. The counterpart to receiving
advisories is an approach to address them
once they are received. Therefore, it is crit-
ical to have a vulnerability and patch man-
agement program in place so that correc-
tive action is taken, i.e., patches and fixes

are applied in a consistent, timely manner.

Disposal
Security incidents are often seen when
equipment is repurposed or disposed
without completely eliminating records
from hard drives or other data storage
devices. Hardware and software should
be appropriately sanitized, especially if
the equipment will be re-used or repur-
posed.

Conclusion
Many of the security activities described
in this article are simply an expansion of
the current activities to include security
considerations. Security is not as diffi-
cult to integrate into the SDLC as it may
appear, and it is vastly more effective
than bolting it on at the end. Integrated
security ensures that the security mech-
anisms are adequate and effective,
something that bolt-on security cannot
boast.

Traditional approaches to security
such as firewalls, intrusion detection
systems, or server hardening are still
important elements of security, but they
are in no way the silver bullet for soft-
ware security. They cannot protect the
application itself against compromise.
This is quite a paradox considering the
application is the most visible of all the
aforementioned components. The addi-
tion of these activities ensures that ade-
quate security is baked-in to the end
product and not sprinkled on, providing
the system with resilience against
attacks.u

References
1. Gartner, Inc. “Recommendations for

Security Administration, 2006.” Qwest
Communications 12 Dec. 2006 <www.
mediaproducts.gartner.com/gc/web
letter/qwest/issue4/gartner2.html>.

2. Carnegie Mellon University. CERT/
CC <www.cert.org>

3. Havenstein, Heather. “Baked-In Se-
curity.” ComputerWorld 21 Mar. 2005.

4. NIST. “Federal Information Security
Management Act.” <www.csrc.nist.
gov/policies/FISMA-final.pdf>.

5. NIST. Security Configuration Check-
lists Repository. <www.checklists.nist.
gov/repository/index.html>.

6. NIST Publications. Computer Security
Resource Center <www.csrc.nist.gov/
publications/nistpubs>.

7. Viega, John. Building Secure Software.
Addison-Wesley Professional, 2001.

8. OWASP. The Open Web Application
Security Project <www.owasp.org>.

9. Sun Developer Network. “Secure Co-

ding Guidelines.” 2000 <www.java.
sun.com/security/seccodeguide.
html>.

10. Lavenhar, Steven. “Code Analysis.”
BuildSecurityIn Portal. National Cyber
Security Division. 28 Jan. 2006 <www.
buildsecurityin.us-cert.gov/daisy/ bsi/
articles/best-practices/code/214.
html?branch=1&language=1>.

11. NIST. “Tool Taxonomy.” <www.
samate.nist.gov/index.php/Tool_Tax
onomy>.

12. Daniels, Mitchell E. Jr. “Memoranda
02-01.” 17 Oct. 2001 <www.whitehouse.
gov/omb/memoranda/m02-01 .
html>.

Notes
1. SQL injection is a type of security

exploit in which the attacker adds SQL
code to a Web form input box to gain
access to resources or make changes to
data.

2. Fault injection is a testing technique
where the application is fed anomalous
input to reveal behavior.

3. A zero-day attack is an exploit against
a vulnerability the same day the vul-
nerability becomes generally known.

Background
1. Goertzel, Karen Mercedes, et al,

Security in the Software Lifecycle:
Making Software Development Pro-
cesses – and the Software Produced by
Them – More Secure, Draft Version
1.2 (Aug. 2006), U.S. Department of
Homeland Security.

March 2007 www.stsc.hill.af.mil 25

About the Author

Kwok H. Cheng is an
associate at Booz Allen
Hamilton where he cur-
rently assists organiza-
tions in implementing
security at the application

level. He has a background in systems
engineering, process improvement, and
information assurance. Cheng has a mas-
ter’s degree in information and telecom-
munication systems, a certificate in
information security management, and is
a certified information systems security
professional.

Booz Allen Hamilton
8283 Greensboro DR
McLean,VA 22102
Phone: (703) 902-3060
E-mail: cheng_kwok@bah.com

