
18 CROSSTALK The Journal of Defense Software Engineering March 2007

Software security deals with the abili-
ty to protect software and its under-

lying systems from being exploited by
unauthorized users and from mishaps
from authorized users. This includes
safeguarding against direct attacks [1],
detecting and preventing indirect
attacks that take advantage of software
defects, removing defects, and preserv-
ing the intrinsic value (such as the
inherent intellectual property) of the
system.

Approaches to ensure that software
systems are secure fall along a continu-
um ranging from reactive to proactive
techniques. Reactive proponents tend
to favor a post-facto approach – apply-
ing security measures to software after
it has been developed. This is based on
the opinion that it is not possible to
protect against every single conceivable
threat. This philosophy is articulated as
if security is the absence of risk, then we will
never get a system that is both secure and use-
ful. There is a need to balance risk and control
[2]. Reactive approaches hinge on three
assumptions. First, systems that are
exhaustively assessed for security
become hard to use and the cost in time
and effort to produce and use such sys-
tems defies the economics of software
development. Second, risk handling
should be deferred until a problem
actually occurs. Third, tools to handle
problems need to be in place to handle
issues when they arise [2].

The proactive approach, on the
other hand, requires that security mea-
sures be implemented during the soft-
ware life cycle as part of the develop-
ment process, so that fielded systems
require little or no patching. This is
based on the premise that if software is
built with security in mind then vulner-
abilities will be addressed early in the
development cycle. To do so, propo-
nents of proactive security measures
require that architectures and designs
that actively promote security be creat-

ed and that risk management be applied
throughout the development process.
Put bluntly, this is the philosophy of
building things right, designing for security,
analyzing security over the whole life cycle, and
coding securely [3].

In practice, both approaches are nec-
essary to create secure software. Since
systems are often a composite of unreli-
able parts, putting those parts together
to ensure security is an engineering

problem, and as such, software develop-
ment should be approached with the
attitude that secure and effective solu-
tions can be created even when some of
the materials used are flawed [2].

Recent media attention on the fre-
quency of security patches that are
required by popular software packages
may lead developers to think that soft-
ware security is an overwhelmingly
complex issue. While security is diffi-
cult, it is not impossible. There are
three specific high-leverage techniques
that can be used, such as threat model-
ing, risk analysis, and software assess-
ment and security testing. Each of
these is well within the reach of the
skills of most developers.

Threat Modeling
The purpose of threat modeling is to
examine the security of a software
component from the perspective of
what types of attack are likely to take
place on it. Traditionally, the practice of
using graphical software representa-
tions, such as Unified Modeling
Language (known as UML), focuses on
describing what is expected of a sys-
tem, not what is unexpected. Threat
modeling augments this approach by
requiring developers to consider ways a
component might be misused based on
past history. It helps developers think
beyond standard features and consider
negative or unexpected events. Arising
from threat modeling are misuse and
abuse cases which address abnormal
behavior. Extending use-cases to in-
clude misuse-cases that depict side-by-
side what behavior should be supported
and what should be prevented has been
proposed [4]. Threat modeling helps
developers view the software compo-
nent from the perspective of an attack-
er, thus bringing security to the fore-
front during all phases of development.

Threat modeling begins with a cata-
log of agents and attacks that have been
carried out on other systems. There are
vulnerability databases such as the
National Vulnerability Database (NVD)
[5] and Open Source Vulnerability
Database (OSVDB) [6] that incorporate
publicly available vulnerability re-
sources and would make a good starting
point in documenting these agents and
attacks. At its most fundamental, the
catalog consists of well-known vulnera-
bilities, such as problems arising from
boundary conditions, intersystem com-
munication, system assumptions, etc.
Other vulnerabilities are added as they
are observed.

The threat model specific to a soft-
ware component – from which use and
misuse cases are constructed – is con-
structed in the following three steps [7]:

High-Leverage Techniques for Software Security

Idongesit Mkpong-Ruffin and Dr. David Umphress
Auburn University

Software security addresses the degree to which software can be exploited or misused. Software development approaches
tend to polarize security efforts as being reactive or proactive; a blend of both approaches is needed in practice. Three
categories of tools provide such a blend: threat modeling, risk analysis, and security assessment and testing. These tools
provide leverage as they are currently in use as quality assurance methods and can be modified with relatively little effort
to address security.

“The purpose of
threat modeling is to
examine the security

of a software
component from the
perspective of what
types of attack are

likely to take
place on it.”

High-Leverage Techniques for Software Security

1. A behavior model of intended func-
tions is defined based on the func-
tional requirements.

2. Based on the behavior model, deci-
sions on potential misuse/abuse or
anomalies of the intended functions
that would violate any of the securi-
ty goals are made.

3. Mitigations for misuse or anomalies
in the threat model are specified.
The steps are frequently carried out

iteratively, with the derived security
models built with different levels of
detail.

Tools and methodologies that are
helpful in threat modeling are attack
trees [8], attack nets [9], and attack pat-
tern matching [10]. These methodolo-
gies approach threat identification at dif-
ferent levels of abstraction. Attack trees
diagram the steps an attacker would take
in completing his/her objective [8].
Attack trees tend to be most effective in
smaller applications. An attack net, an
extension of an attack tree, is a Petri net
used to represent complex security
threats with variation within attack pat-
terns [9]. Attack nets are not meant to
model the actual behavior of a sys-
tem/component when an attack hap-
pens but are used to organize the devel-
opment of probable attack scenarios.
Concurrency and attack progress are
modeled as tokens, and intermediate and
final objectives are modeled as places,
while commands or inputs are modeled
as transitions [9]. Attack pattern match-
ing processes such as Security Analysis
for Existing Threats [10] and Microsoft’s
Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of
Service, and Elevation of Privilege
(STRIDE) [11] approach, are designed
to match attack patterns to system
designs. These processes are used at the
design level to provide a higher level of
abstraction so that the evolving system
design can incorporate security mea-
sures to the process.

Risk Analysis
Risk is the probability that an event
with a negative impact will occur. It is
determined by factors such as the ease
of executing an attack, the attacker’s
motivation and resources, a system’s
existing vulnerabilities, and the cost or
impact in a particular business context
[1]. Risk analysis deals with the way
threats are described. It takes into
account the impacts, the probable con-
sequences, and the probability and fre-
quency of occurrence of each threat [1,
12]. It helps in determining ways to alle-

viate identified risks by providing selec-
tion criteria for safeguards and other
means of preventing or lessening iden-
tified risks to a level that is considered
acceptable.

The activities that are done during
risk analysis are determined by the
security requirements received during
requirements and design phase analysis.
Common risk analysis activities include
risk identification, assessment, charac-
terization, communication, mitigation,
and risk-specific policy definition [12].
Techniques such as asset valuation,
quantitative risk analysis, and qualitative
risk analysis are used in risk analysis to
gather required information so that
security-relevant design specifications
can be created [13]. The information
gained from risk analysis is used while
choosing tools and mechanisms for the
security design process. The value of
assets and the cost of attacks are com-
pared with the costs of tools and mech-
anisms in order to ensure the chosen

tools and mechanisms are appropriate
and proportionate to the risk to which
the application or system is exposed.

Asset valuation is the process used
to determine the worth of an asset. It
examines information not only of the
hardware and software pertinent to the
system but also personnel and other
physical assets. The value of the asset is
made up of its inherent value and the
short and long term impacts and conse-
quences of its compromise [14]. This
aids in justifying proposed mitigation to
stakeholder, legal and other regulatory
requirements [1, 12].

Quantitative risk analysis is used to
identify the key risk elements and the
value associated with identified risk.
This information allows for the estima-
tion of potential loss and the ability to
analyze potential threats. Quantitative
risk analysis is used to compute what is
known as the Annual Loss Expectancy
(ALE):

ALE = Single Loss Expectancy (SLE) x
Annualized Rate of Occurrence (ARO)

where,

ARO is the frequency of threat per year,
SLE is the asset value x the exposure
factor (EF), and EF is the percentage of
asset loss caused by the potential threat.

The values garnered from the quantita-
tive analysis can then be ranked and deci-
sions can then be made based upon the
information.

Lastly, qualitative risk analysis is used
to discover the threats and vulnerabilities
that apply to different identified scenar-
ios. Safeguards and countermeasures that
reduce or prevent the probability and
effect of occurrence are identified, based
on the threats and vulnerabilities found
[12]. Most qualitative risk analysis
methodologies assign weight and values
to categories such as probability of
occurrence, impact, exposure, and cost.
Higher values are assigned to categories
that are assumed to be of greater impor-
tance, thereby reflecting their impact in
the overall priority score.

The information gathered during risk
analysis is then used in the rest of the
development cycle. Fault-injection meth-
ods and security tests are driven by the
vulnerabilities and risks discovered and
annotated during risk analysis.

Software Assessment and
Security Testing
Testing traditionally involves exercising
an application to see if it works as it
should. In contrast, security testing
entails identifying and removing vulnera-
bilities that could result in security viola-
tions. It also validates the effectiveness of
security measures that are in place [15].

Most of the testing methodologies
used fall into one of two categories: black-
box or white-box testing. Black-box tests
are those whose data are derived from the
specified functional requirements in which
attention is not given to the final program
structure [16, 17]. Commonly used black-
box testing approaches for software secu-
rity are penetration, functional, risk-based,
and unit testing.

White-box tests are those tests and
assessment activities where the structure
and flow of the software under review
are visible to the tester. Testing plans are
made based on the details of the software
implementation and test cases are based
on the program structure [15, 16, 17].
Commonly used white-box assessment

March 2007 www.stsc.hill.af.mil 19

“Quantitative risk
analysis is used to
identify the key risk
elements and the
value associated

with identified risk.”

Software Security

approaches that can assess security are
source code analysis and profiling.

The method by which security
assessment and testing is carried out
depends on the perspective of the
tester relative to the software compo-
nent. Test cases that are constructed
based on functional requirements with-
out regard to specific knowledge about
software internals are known as black-
box tests; test cases that take advantage
of internal structure are known as
white-box tests. Often, the information
gathered during risk analysis is used to
develop white-box and black-box test
cases. In particular, flaws identified dur-
ing risk analysis can be purposely added
to a software component to forcibly
change the program state and demon-
strate the effects of a successfully
exploited vulnerability. This approach,
known as fault injection, allows for
absolute worst-case prediction [18]. It
gives an insight into predictive mea-
sures such as mean-time-to-hazard,
minimum-time-to-hazard, and mean-
time-to-failure; all of which quantify
risk.

Three approaches are commonly
taken to test the security of a compo-
nent in a black-box fashion. Risk-based
testing demonstrates that security func-
tionalities work as intended [19].
Penetration testing examines the ease
with which a component can be infil-
trated. Unit security testing assumes
that adversaries will take a two-stage
approach to attack: First, they get
access to the software, then second,
control the software after access. As
such, the assumptions that developers
make about the environment and incor-
porate into the components should be
checked at the unit testing level. Attack
trees have been used by many as a
method for identifying and modeling
security threats, especially those that
involve many stages for implementation
[20].

Two high-leverage white-box tech-
niques for assessing and validating
security are source code analysis and
profiling. Static analysis tools are used
to look at the text of a program while it
is not executing so that it can discover
vulnerabilities within the program. A
fixed set of patterns or rules are used as
basis for scanning the source code. For
example, many vulnerabilities are
known to come from reusable library
functions such as stropy() and stat ();
so, a static analyzer could scan the pro-
grams to see if they contain any calls to
those functions. The result of the

source code analysis aids in the devel-
opment of test cases and gives a good
perspective of the security posture of
the application. White-box testing
should be used to verify that the poten-
tial vulnerabilities uncovered by the sta-
tic analysis tool will not lead to security
violations [21].

Profiling tools enable the tester to
observe the performance of an applica-
tion while it is running. This provides
insight into where performance bottle-
necks may be occurring. It also enables
the tester to see and understand the
sequence of function calls and the time
spent in different areas of the software,
and thereby brings it to the open areas
of vulnerability that are not apparent
when using static code analyzers [12].

Although security aspects of soft-
ware should be tested, it is also impor-
tant to understand that security is not
just a function that can be checked off
but is an emergent property of the
application. In other words, this would
be analogous to saying that being dry is
an emergent property of being inside a
tent during a rainstorm. The tent only
keeps a person dry if the poles are
made stable, vertical, and able to sup-
port the weight of the wet fabric; the
tent also must have waterproof fabric
(without any holes) and be large enough
to protect all those who want to remain
dry. Lastly, everyone must stay under
the tent the whole time it is raining. So,
although having poles and fabric is
important, it would not be enough to
say the tent has poles and fabric, thus it keeps
one dry! [22].

Conclusion
To develop software systems with secu-
rity as an emergent feature entails that

the high leveraged techniques discussed
be incorporated into the whole soft-
ware development life cycle. Threat
modeling that drives risk analysis begins
with the garnering of requirements and
use cases. Risks generated from the
threat modeling activities act as a
barometer for design, development of
tests, and development of rules for
software code assessment and as one of
the benchmarks for testing.

Software security demands a balance
of reactive and proactive measures, and
it requires that more time be spent in
determining the risks that can or will
affect the system. Software systems
have to be designed from a high enough
level of abstraction with security of the
system as an emergent feature of the
system in question. The processes uti-
lized to create secure systems need
more refinement so that the ubiquity of
software is not hampered by inherent
insecurity due to poor design.u

References
1. Verdon, Denis, and Gary McGraw.

“Risk Analysis in Software Design.”
IEEE Security and Privacy 2.4 (2004).

2. Cheswick, B, Paul Kocher, G.
McGraw, and A. Rubin. “Bacon Ice
Cream: The Best Mix of Proactive and
Reactive Security?” IEEE Security and
Privacy 1.4 (2003).

3. McGraw, Gary. “Building Secure
Software: Better Than Protecting Bad
Software.” IEEE Software 5.7 (2002).

4. G. Sindre, and A.L. Opdahl. Templates
for Misuse Case Description. Proc. of
the Seventh International Workshop
on Requirements Engineering, Foun-
dation for Software Quality (REFSQ
2001), 4-5 June 2001, Switzerland.

5. United States. Department of
Homeland Security (DHS). National
Vulnerability Database 7 Dec. 2006
<http://nvd.nist.gov/>.

6. OSVDB. Open Source Vulnerability
Database. 8 Dec. 2006 <www.
osvdb.org>.

7. Dianxiang Xu, and Kendall Nygard.
“A Threat-Driven Approach to
Modeling and Verifying Secure
Software.” Proc. of the 20th IEEE/
ACM International Conference on
Automated Software Engineering
ASE, Nov. 2005, Long Beach, CA.
New York: ACM Press, 2005.

8. Schneier, B. “Attack Trees: Modeling
Security Threats.” Dr. Dobb’s Journal
Dec. 1999.

9. McDermott, J.P. “Attack Net Penetra-
tion Testing.” Proc. of the 2000
Workshop on New Security Paradigm,

20 CROSSTALK The Journal of Defense Software Engineering March 2007

“Software security
demands a balance

of reactive and
proactive measures, and

it requires that more
time be spent in

determining the risks
that can or will affect

the system.”

High-Leverage Techniques for Software Security

March 2007 www.stsc.hill.af.mil 21

About the Authors

David A. Umphress,
Ph.D., is an associate
professor of computer
science and software
engineering at Auburn
University. He has

worked over the past 25 years in various
software development capacities in both
industry and academia. He is also an Air
Force reservist, currently serving as a
researcher for the College of Aerospace
Doctrine, Research and Education,
Maxwell AFB, Alabama. Umphress is an
Institute of Electrical and Electronics
Engineers certified software develop-
ment professional.

Department of Computer
Science and Software Engineering
Auburn University
107 Dunstan Hall
Auburn,AL 36849-5347
Phone: (334) 844-6335
E-mail: umphrda@eng.auburn.edu

Idongesit Mkpong-
Ruffin is a computer sci-
ence and software engi-
neering doctorate stu-
dent at Auburn Univer-
sity. She has a Bachelor

of Science in computer information
Science from Freed-Hardeman Univer-
sity, a Master of Business Administra-
tion from Tennessee State University
and a Master of Science in computer
information science from Troy Univer-
sity, Montgomery campus.

Department of Computer
Science and Software Engineering
Auburn University
107 Dunstan Hall
Auburn,AL 36849-5347
Phone: (334) 844-7001
E-mail: mkponio@auburn.edu

Sept. 2000. Ballycotton, County Cork,
Ireland. New York: ACM Press, 2000.

10. Gegick, M., and L. Williams. “Match-
ing Attack Patterns to Security
Vulnerabilities in Software-Intensive
System Designs.” Proc. of the 2005
Workshop on Software Engineering
For Secure Systems; Building
Trustworthy Applications, 15-16 May
2005, St. Louis, MS. New York: ACM
Press, 2005 <http://doi.acm.org/10.
1145/1083200.1083211>.

11. Hernan, Shawn, Scott Lambert,
Tomasz Ostwald, and Adam Shos-
tack. “Threat Modeling – Uncover
Security Design Flaws Using The
STRIDE Approach.” MSDN Maga-
zine Nov. 2006.

12. Steel, Christopher, Ramesh Nagappan,
and Ray Lai. Core Security Patterns:
Best Practices and Strategies for J2EE,
Web Services, and Identity Manage-
ment. Prentice Hall, 2005.

13. McGraw, Gary. Software Security:
Building Security In. Addison-Wesley
Professional, 2006.

14. United States. Department of Com-
merce. An Introduction to Computer
Security – The NIST Handbook.
NIST, 1995.

15. Pan, Jiantao. “Software Testing – 18-
849b Dependable Embedded Sys-
tems.” Carnegie Mellon University,

1999 <www.ece.cmu.edu/~koop man/
des_s99/sw_testing>.

16. Howard, Michael, and David C.
LeBlanc. Writing Secure Code. 2nd ed.
Redmond, WA: Microsoft Press, 2002.

17. Hetzel, William C. The Complete
Guide to Software Testing. 2nd ed.
Wellesley, MA: QED Information
Sciences, 1988.

18. Voas, Jeffrey M., and Gary McGraw.
Software Fault Injection: Inoculating
Programs Against Errors. New York,
NY: John Wiley & Sons, 1998.

19. Michael, C.C., and Will Radosevich.
“Risk-Based and Functional Security
Testing.” DHS. BuildSecurityIn Portal
<https://buildsecurityin.us-cert.
gov/portal/article/bestpractices/secu
ri ty_test ing/over view.xml#Risk
-Based-Testing>.

20. Schneier, B. Secrets and Lies: Digital
Security in a Networked World. New
York: John Wiley & Sons, 2000.

21. Janardhanudu, Girish. “White Box
Testing.” DHS. BuildSecurityIn <https://
buildsecurityin.us-cert.gov/portal/
article/bestpractices/white_box_
testing/overview.xml>.

22. Hope, Paco, Gary McGraw, and Annie
I. Anto’n. “Misuse and Abuse Cases:
Getting Past the Positive.” IEEE
Security and Privacy 2.3 (2003).

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEWTWISTONTECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWAREASSURANCE

OCT2006 c STARWARS TO STAR TREK

NOV2006 c MANAGEMENTBASICS

DEC2006 c REQUIREMENTS ENG.
JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI
To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

