
Today’s dependency on networked soft-
ware systems has been matched by an

increase in the number of attacks against
governments, corporations, educational
institutions, and individuals. These attacks
result in the loss and compromise of sen-
sitive data, system damage, lost productiv-
ity, and financial loss. To address this
growing threat, the introduction of soft-
ware vulnerabilities during development
and ongoing maintenance must be signifi-
cantly reduced, if not eliminated.

It is no secret that common, everyday
software defects cause the majority of
software vulnerabilities. Poor develop-
ment practices cause numerous delivered
defects, some of which can lead to vul-
nerabilities. Software developers repair
vulnerabilities as they are reported; cycles
of patch and install follow. However,
there are so many patches to install that
system administrators cannot keep up
with the job. Often the attackers analyze
the patches for clues to attacking
unpatched systems. Sometimes the patch-
es themselves contain security defects.
The patch-oriented strategy of respond-
ing to security defects is not working.
There is need for a prevention and early
security defect-removal strategy.

Software Vulnerabilities
One example of a relatively common pro-
gramming error that can lead to software
vulnerabilities involves the use of format-
ted output functions in C and C++, as
well as some other common languages.
For example, a malicious user is able to
manipulate the string variable named out-
put in the following statement:

printf(output);

The malicious user will be able to exploit
this vulnerability to execute code with the
permissions of the vulnerable process [1].
This is largely a consequence of the little
known %n conversion specifier that
instructs the formatted output function to

write an integer value to a specified address.
The error is the passing of untrusted data
as a format string. The solution is as easy as
providing a static format specification:

printf(“%s”, output);

Or, even more succinctly, using the puts()
function so that no formatting is neces-
sary or possible, as shown in the following
example:

puts(output);

Format output functions can also lead to
vulnerabilities in other languages as is
shown in the following examples:
• Perl: could alter values, the conse-

quence of which depends on how the
value is used.

• PHP: log avoidance (fails quietly).
• Python: information leak or denial-of-

service (DoS) attacks.

• Ruby: DoS attacks.
As long as developers are unaware of

the security risks, it is likely that common
programming errors, such as allowing
untrusted data to be incorporated into a
format string, will result in software vul-
nerabilities being operationally deployed.

If root causes of software vulnerabili-
ties are not addressed, software vulnerabil-
ity reports are likely to continue on the
upward trend as shown in Figure 1. Nearly
4,000 vulnerabilities were reported in the
first half of 2006 alone.

International Standardization
Efforts
Inherent weaknesses in programming
languages such as C, C++, Fortran, Ada,
and COBOL are a contributing factor to
software vulnerabilities. Many of these
languages were specified in the days when
ubiquitous networking language designers

Secure Coding Standards

Inherent weaknesses in programming languages contribute to software vulnerabilities. Increasingly, organizations are produc-
ing standards to improve software security. Current efforts to develop software security standards are surveyed, and two such
efforts are described in detail. An international standards group is writing a document providing guidance to users of pro-
gramming languages on how to avoid the vulnerabilities that exist in the programming language selected for a particular pro-
ject. Carnegie Mellon University’s (CMU’s) Computer Emergency Response Team (CERT) is developing secure coding prac-
tices for the C and C++ programming languages1.

March 2007 www.stsc.hill.af.mil 9

James W. Moore
The MITRE Corporation

Robert C. Seacord
Software Engineering Institute

0

250

500

750

1000

1250

1500

1750

2000

F Y 2004

Q 2

F Y 2004

Q 3

F Y 2004

Q 4

F Y 2005

Q 1

F Y 2005

Q 2

F Y 2005

Q 3

F Y 2005

Q 4

F Y 2006

Q 1

F Y 2006

Q 2

F Y 2006

Q 3TD

All Reports

Direct Reports

Figure 1: Vulnerabilities Reported to CERT/Coordination Center (CC)

Software Security

were not greatly concerned with the
prospect of attacks by external parties.
Many languages were predominately
designed for flexibility, ease of use, and
performance. As a result, many of the lan-
guages, in effect, invite coders to use inse-
cure coding constructs. One result has
been the growth of usage guidelines that
inform and encourage coders to use secure
alternatives to easily attacked constructs.
Another result is the development of
recent projects by standards bodies to pro-
vide secure alternatives.

Increasingly, standards organizations
are working on ways to improve software
security. Accomplishing change through
standards organizations can be harder than
accomplishing change at any other organi-
zational level, but when successful, can
have a broader impact across the industry.
The international standards bodies –
International Organization for Standardi-
zation (ISO) and International Electro-
technical Commission (IEC) – are working
on a number of projects that affect soft-
ware security:
• The ISO Technical Management Board

(TMB) performs strategic planning and
coordination for ISO. Currently, its
advisory group on security is coordi-
nating standards efforts. The ISO
TMB working group on risk manage-
ment is providing overall guidance for
risk management.

• ISO/IEC Joint Technical Committee
(JTC) 1/Standards Committee (SC) 27
is responsible for computing security.

Many of its projects concern methods
for protecting deployed software
<www.ni.din.de/sixcms/detail.php?
id=10172>.

• ISO/IEC JTC 1/SC 7 has the respon-
sibility for systems and software engi-
neering. Its standards provide a base-
line for the responsible practice of sys-
tems and software engineering, includ-
ing software assurance <www.jtc1-sc7.
org/>.

• ISO/IEC JTC 1/SC 22 has the respon-
sibility for programming languages,
including their effect on improved soft-
ware security <www.open-std.org/jtc1/
sc22/>. For example, SC 22/ Working
Group (WG) 14, the group that is
responsible for the standardization of
the C programming language, is devel-
oping a technical report on C library
functions that incorporate bounds
checking to mitigate against buffer over-
flow vulnerabilities [2].

Figure 2 illustrates the relationship of the
relevant standards committees.

Other Working Group
Vulnerabilities (OWGV)
All programming languages have con-
structs that are imperfectly defined, imple-
mentation-dependent, or difficult to use
correctly. As a result, software programs
can execute differently than intended by
the writer. In some cases, these vulnerabil-
ities can be exploited by an attacker to
compromise the safety, security, and priva-
cy of a system.

A new SC 22 group, the OWGV, is
addressing the issue of programming lan-
guage vulnerabilities. The goal of the
OWGV <http://aitc.aitcnet.org/isai/>, as
described in the proposal for a new work
item, is the following:

… to prepare comparative guid-
ance spanning a large number of
programming languages, so that
application developers will be bet-
ter informed regarding the vulnera-
bilities inherent to candidate lan-
guages and the costs of avoiding
such vulnerabilities. An additional
benefit is that developers will be
better prepared to select tooling to
assist in the evaluation and avoid-
ance of vulnerabilities. [3]

ISO/IEC JTC 1/SC 22/OWGV is
writing a document containing guidance to
users of programming languages on how
to avoid the vulnerabilities that exist in the
programming language selected for a par-
ticular project. Implicitly, the guidance may
also be helpful in selecting a language for a
particular project. Finally, the report may
be helpful in choosing tools to assist in
evaluating and avoiding vulnerabilities.
The tentative schedule calls for publishing
this document in January of 2009.

Although work has just begun, it is
anticipated that the group’s technical
report will provide comparative guidance
covering a wide variety of languages.
Readers would be able to study the vulner-
abilities of particular languages they
already know well; in addition, readers
would be able to apply their existing
knowledge of vulnerabilities in the context
of programming languages that are unfa-
miliar.

Currently, the group enjoys the partici-
pation of representatives from many of
the important programming languages and
hopes to attract more. The group plans to
obtain information about vulnerabilities
and their treatment from initiatives like the
common vulnerabilities and exposures
database <http://cve.mitre.org> and the
CERT secure coding initiative.

CERT Secure Coding
Initiative
Additional efforts in developing secure
coding standards are originating outside of
formal standards organizations. CMU’s
Software Engineering Institute (SEI)
CERT program has deployed a secure
coding Web site at <www.securecoding.
cert.org> to cooperate with the software
development community in codifying a

10 CROSSTALK The Journal of Defense Software Engineering March 2007

0

250

500

750

1000

1250

1500

1750

2000

F Y 2004

Q 2

F Y 2004

Q 3

F Y 2004

Q 4

F Y 2005

Q 1

F Y 2005

Q 2

F Y 2005

Q 3

F Y 2005

Q 4

F Y 2006

Q 1

F Y 2006

Q 2

F Y 2006

Q 3TD

All Reports

Direct Reports

Joint

Technical

Comm ittee 1

Other

Technical

Comm ittees

Other

Technical

Comm ittees

T echn ica l

M an ag em en t

Bo ard

Sub-

Committee

7

Sub-

Committee

27

Sub-

Committee

22

O th e r S u b -

C o m m it te e s

ISO IEC

Advisory Group on

Security

Workin

Risk Management

Technical

Management

Board

ISO IEC

Advisory Group

on Security

WG on

Risk Management

Other

Technical

Committees

Joint

Technical

Committee 1

Other

Technical

Committees

Information Technology

Sub-

Committee

7

Sub-

Committee

22

Sub-

Committee

27

Software and

Systems

Engineering

Programming

Languages

IT Security

Other

Sub-

Committees

Figure 2: Relevant International Standard Committees

Secure Coding Standards

practical and effective set of secure coding
practices for popular programming lan-
guages. These coding practices can be
used by software developers to eliminate
vulnerabilities before software is opera-
tionally deployed.

CERT’s initial efforts are focused on
the development of secure coding prac-
tices for the C and C++ programming
languages. C and C++ were selected
because a large percentage of critical
infrastructure is developed and main-
tained using these programming lan-
guages. C and C++ are popular and viable
languages, although they have characteris-
tics that make them prone to security
flaws. The CERT C programming lan-
guage secure coding standard is scheduled
for publication in January 2008 while the
C++ standard is not scheduled for publi-
cation until January 2009. However, work-
ing drafts for both documents are avail-
able on the secure coding Web site.

There are numerous available sources,
both online and in print, containing cod-
ing guidelines, best practices, suggestions,
tips, and industry-specific standards such
as the Motor Industry Software Reliability
Association (MISRA) Guidelines for the
use of the C language in critical systems
[4]. However, none of these sources pro-
vide a prescriptive set of secure coding
standards that can be uniformly applied in
the development of a software system.
This conclusion is reinforced by the
Secure Software Assurance Common
Body of Knowledge [5], published by the
DHS, which laments the lack of public stan-
dards as such for secure programming.

The secure coding practices proposed
by CERT are based on standard language
specifications as defined by official stan-
dards organizations (such as ISO/IEC) or
by de facto standard language specifications.
CERT is not an internationally recognized
standards body, but it is working with orga-
nizations such as ISO/IEC to advance the
state of the practice in secure coding. The
ISO/IEC JTC1/SC22 WG14 international
standardization working group for the pro-
gramming language C, for example, has
offered to provide direction in the develop-
ment of the C language secure coding
practices and to review and comment on
drafts of the informal CERT standard.

The goal of the CERT work is to
encourage organizations to develop their
own coding standards to be applied on all of
their projects. The organizational coding
standard would codify a set of rules that are
necessary (but not sufficient) to ensure the
security of software systems developed in
the respective programming languages [6].

A secure coding standard consists of

rules and recommendations. Coding practices
are defined to be rules when all of the fol-
lowing conditions are met:
1. Violation of the coding practice will

result in a security flaw that may result
in an exploitable vulnerability.

2. An enumerable set of exceptional condi-
tions (or no such conditions) in which
violating the coding practice is necessary
to ensure the correct behavior for the
program. One example of a rule with an
exception condition is to ensure that integer
operations do not result in an overflow. While
overflow generally indicates an error
condition, if the code was designed
assuming module behavior then it is nec-
essary to provide an exception for over-
flows resulting from this behavior.

3. Conformance to the coding practice
can be verified.

Rules must be followed to claim compli-
ance with a standard unless an exceptional
condition exists. If an exceptional condition
is claimed, the exception must correspond
to a predefined exceptional condition and
the application of this exception must be
documented in the source code.

Recommendations are guidelines or
suggestions. Coding practices are defined
to be recommendations when all of the
following conditions are met:
1. Application of the coding practice is

likely to improve system security.
2. One or more of the requirements nec-

essary for a coding practice to be con-
sidered a rule cannot be met.

Relationships Between Efforts
CERT representatives participating in the
ISO/IEC working group on guidance for
avoiding vulnerabilities through language
use are coordinating their efforts. While
the ISO/IEC group is working on provid-
ing language-independent guidance, the
CERT effort is working on developing
and consolidating the language-specific
guidance that provides the foundations
for the ambitious goals of OWGV.

CERT’s efforts in identifying and doc-
umenting secure coding practices for C
and C++ will contribute to the standard-
ization of these practices and advance the
goals of the OWGV, while the OWGV
effort provides a framework for CERT
language-specific efforts.

Summary
Efforts have now begun to codify secure
coding practices both at the international
and organizational levels. The success of
the secure coding standards depends on
the active involvement of members of the
software development communities. To
become involved in the OWGV group,
visit <www.aitcnet.org/isai/> or contact
the convener. To contribute to the CERT
secure coding standards, go to <www.sec
urecoding.cert.org> and review or com-
ment on the existing content or submit
new ideas for secure coding practices.u

Acknowledgements
Thanks to Hal Burch for his information
on format string vulnerabilities in lan-
guages other than C and C++ and to John
Benito for his assistance in developing this
article. Thanks also to reviewers Pamela
Curtis, Chad Dougherty, and Fred Long.

References
1. Seacord, Robert C. Secure Coding in C

and C++. Boston, MA: Addison-
Wesley, 2005 <www.cert.org/books/
secure-coding>.

2. ISO/IEC JTC1 SC22 WG14. Infor-
mation Technology – Programming
Languages, Their Environments and
System Software Interfaces – Exten-
sions to the C Library, – Part I:
Bounds- Checking Interfaces. ISO/
IEC TR 24731. Geneva, Switzerland:
ISO, 2006 <www.open-std.orgjtc1/sc
22/wg14/www/docs/n1146.pdf>.

3. ISO/IEC JTC 1/SC 22. New Work
Item Proposal for Guidance to
Avoiding Vulnerabilities in Program-
ming Languages Through Language
Selection and Use. 2005 <www.open
-std.org/jtc1/sc22/open/n3913.htm>.

4. MIRA Limited. MISRA C: 2004
Guidelines for the Use of the C Lan-

March 2007 www.stsc.hill.af.mil 11

“The goal of the CERT
work is to encourage

organizations to develop
their own coding

standards to be applied
on all of their projects.

The organizational
coding standard would ...

ensure the security of
software systems
developed in the

respective programming
languages.”

Software Security

guage in Critical Systems. Warwick-
shire, UK: MIRA Limited, 2004.

5. Redwine, Jr. Samuel T., Ed. Software
Assurance: A Guide to the Common
Body of Knowledge to Produce,
Acquire, and Sustain Secure Software.
Draft version 1.05. Aug. 2006.

6. Seacord, Robert C. “Secure Coding
Standards.” Static Analysis Summit.
NIST Special Publication 500-262.
Gaithersburg, MD: NIST, 2006. 14-16
<http://samate.nist.gov/docs/NIST_
Special_Publication_500-262.pdf>.

Note
1. The nomenclature for international

standards groups represents a hierarchi-
cal organization. The international
standards committee for information
technology is a JTC of two internation-
al standards-makers, the ISO and the
IEC, and is therefore called ISO/IEC
JTC 1. It subdivides its work among
numbered subcommittees: SC 7 deals
with software and systems engineering,
SC 22 with programming languages,
and SC 27 with computing security. SCs
subdivide their work among numbered
or lettered WG and OWGs.

12 CROSSTALK The Journal of Defense Software Engineering March 2007

About the Authors

Robert C. Seacord is a
senior vulnerability ana-
lyst at the CERT/CC at
the SEI. He is the author
of Secure Coding in C and
C++ and co-author of

Building Systems from Commercial
Components and Modernizing Legacy Systems,
as well as more than 50 papers on soft-
ware security, component-based soft-
ware engineering, Web-based system
design, legacy-system modernization,
component repositories and search
engines, and user interface design and
development. Seacord also has worked
at the X Consortium where he devel-
oped and maintained code for the
Common Desktop Environment and
the X Window System.

SEI
Pittsburgh, PA 15213
Phone: (412) 268-7608
Fax: (412) 268-6989
E-mail: rcs@cert.org

James W. Moore is a 35-
year veteran of software
engineering in IBM and,
now, the MITRE Corpo-
ration. He is an executive
editor of the IEEE

Computer Society’s Guide to the Software
Engineering Body of Knowledge and a mem-
ber of the editorial board of the
Encyclopedia of Software Engineering. He
participates in international standardiza-
tion related to software and systems
engineering as well as programming lan-
guages. Moore is a fellow of the IEEE
and a charter member of the IEEE
Computer Society’s Golden Core.

MITRE Corporation
7515 Colshire DR
H505
McLean,VA 22102-7508
Phone: (703) 983-7396
Fax: (703) 983-1279
E-mail: moorej@mitre.org

BuildSecurityIn
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
As part of the Software Assurance program, Build Security In
(BSI) is a project of the Strategic Initiatives Branch of the
National Cyber Security Division (NCSD) of the Department
of Homeland Security. The Software Engineering Institute
(SEI) was engaged by the NCSD to provide support in the
Process and Technology focus areas of this initiative. The SEI
team and other contributors develop and collect software assur-
ance and software security information that helps software
developers, architects, and security practitioners to create secure
systems. BSI content is based on the principle that software
security is fundamentally a software engineering problem and
must be addressed in a systematic way throughout the software
development life cycle. BSI contains and links to a broad range
of best practices, tools, guidelines, rules, principles, and other
knowledge that can be used to build security into software in
every phase of its development.

National Institute of Standards and
Technology: Computer Security Resource
Center
www.csrc.nist.gov
The Computer Security Division – (893) is one of eight divi-
sions within National Institute of Standards and Technology’s
(NIST) Information Technology Laboratory. The mission of
NIST’s Computer Security Division is to improve information
systems security by: raising awareness of information technolo-
gy (IT) risks, vulnerabilities and protection requirements, par-

ticularly for new and emerging technologies; researching, study-
ing, and advising agencies of IT vulnerabilities and devising
techniques for the cost-effective security and privacy of sensitive
federal systems; developing standards, metrics, tests and valida-
tion programs; and developing guidance to increase secure IT
planning, implementation, management and operation.

Computer Emergency Readiness Team
Coordination Center
www.cert.org
The Computer Emergency Readiness Team Coordination
Center is a center of Internet security expertise, located at the
Software Engineering Institute (a federally funded research and
development center operated by Carnegie Mellon University).
The team studies Internet security vulnerabilities, researches
long-term changes in networked systems, and develops infor-
mation and training to help you improve security.

Committee on National Security Systems
www.cnss.gov
Under Executive Order 13231 of October 16, 2001, Critical
Infrastructure Protection in the Information Age, the President
designated the National Security Telecommunications and
Information Systems Security Committee as the Committee on
National Security Systems (CNSS). The CNSS provides a
forum for the discussion of policy issues, sets national policy,
and promulgates direction, operational procedures, and guid-
ance for the security of national security systems.

WEB SITES

